""" Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. Note that only the integer weights 0-1 knapsack problem is solvable using dynamic programming. """ def mf_knapsack(i, wt, val, j): """ This code involves the concept of memory functions. Here we solve the subproblems which are needed unlike the below example F is a 2D array with ``-1`` s filled up """ global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: val = mf_knapsack(i - 1, wt, val, j) else: val = max( mf_knapsack(i - 1, wt, val, j), mf_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1], ) f[i][j] = val return f[i][j] def knapsack(w, wt, val, n): dp = [[0] * (w + 1) for _ in range(n + 1)] for i in range(1, n + 1): for w_ in range(1, w + 1): if wt[i - 1] <= w_: dp[i][w_] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_]) else: dp[i][w_] = dp[i - 1][w_] return dp[n][w_], dp def knapsack_with_example_solution(w: int, wt: list, val: list): """ Solves the integer weights knapsack problem returns one of the several possible optimal subsets. Parameters ---------- * `w`: int, the total maximum weight for the given knapsack problem. * `wt`: list, the vector of weights for all items where ``wt[i]`` is the weight of the ``i``-th item. * `val`: list, the vector of values for all items where ``val[i]`` is the value of the ``i``-th item Returns ------- * `optimal_val`: float, the optimal value for the given knapsack problem * `example_optional_set`: set, the indices of one of the optimal subsets which gave rise to the optimal value. Examples -------- >>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22]) (142, {2, 3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4]) (8, {3, 4}) >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4]) Traceback (most recent call last): ... ValueError: The number of weights must be the same as the number of values. But got 4 weights and 3 values """ if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) num_items = len(wt) if num_items != len(val): msg = ( "The number of weights must be the same as the number of values.\n" f"But got {num_items} weights and {len(val)} values" ) raise ValueError(msg) for i in range(num_items): if not isinstance(wt[i], int): msg = ( "All weights must be integers but got weight of " f"type {type(wt[i])} at index {i}" ) raise TypeError(msg) optimal_val, dp_table = knapsack(w, wt, val, num_items) example_optional_set: set = set() _construct_solution(dp_table, wt, num_items, w, example_optional_set) return optimal_val, example_optional_set def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set): """ Recursively reconstructs one of the optimal subsets given a filled DP table and the vector of weights Parameters ---------- * `dp`: list of list, the table of a solved integer weight dynamic programming problem * `wt`: list or tuple, the vector of weights of the items * `i`: int, the index of the item under consideration * `j`: int, the current possible maximum weight * `optimal_set`: set, the optimal subset so far. This gets modified by the function. Returns ------- ``None`` """ # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(dp, wt, i - 1, j, optimal_set) else: optimal_set.add(i) _construct_solution(dp, wt, i - 1, j - wt[i - 1], optimal_set) if __name__ == "__main__": """ Adding test case for knapsack """ val = [3, 2, 4, 4] wt = [4, 3, 2, 3] n = 4 w = 6 f = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] optimal_solution, _ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)