import random class Point: def __init__(self, x: float, y: float) -> None: self.x = x self.y = y def is_in_unit_circle(self) -> bool: """ True, if the point lies in the unit circle False, otherwise """ return (self.x ** 2 + self.y ** 2) <= 1 @classmethod def random_unit_square(cls): """ Generates a point randomly drawn from the unit square [0, 1) x [0, 1). """ return cls(x=random.random(), y=random.random()) def estimate_pi(number_of_simulations: int) -> float: """ Generates an estimate of the mathematical constant PI (see https://en.wikipedia.org/wiki/Monte_Carlo_method#Overview). The estimate is generated by Monte Carlo simulations. Let U be uniformly drawn from the unit square [0, 1) x [0, 1). The probability that U lies in the unit circle is: P[U in unit circle] = 1/4 PI and therefore PI = 4 * P[U in unit circle] We can get an estimate of the probability P[U in unit circle] (see https://en.wikipedia.org/wiki/Empirical_probability) by: 1. Draw a point uniformly from the unit square. 2. Repeat the first step n times and count the number of points in the unit circle, which is called m. 3. An estimate of P[U in unit circle] is m/n """ if number_of_simulations < 1: raise ValueError("At least one simulation is necessary to estimate PI.") number_in_unit_circle = 0 for simulation_index in range(number_of_simulations): random_point = Point.random_unit_square() if random_point.is_in_unit_circle(): number_in_unit_circle += 1 return 4 * number_in_unit_circle / number_of_simulations if __name__ == "__main__": # import doctest # doctest.testmod() from math import pi prompt = "Please enter the desired number of Monte Carlo simulations: " my_pi = estimate_pi(int(input(prompt).strip())) print(f"An estimate of PI is {my_pi} with an error of {abs(my_pi - pi)}")