""" Python program to show how to interpolate and evaluate a polynomial using Neville's method. Neville's method evaluates a polynomial that passes through a given set of x and y points for a particular x value (x0) using the Newton polynomial form. Reference: https://rpubs.com/aaronsc32/nevilles-method-polynomial-interpolation """ def neville_interpolate(x_points: list, y_points: list, x0: int) -> list: """ Interpolate and evaluate a polynomial using Neville's method. Arguments: x_points, y_points: Iterables of x and corresponding y points through which the polynomial passes. x0: The value of x to evaluate the polynomial for. Return Value: A list of the approximated value and the Neville iterations table respectively. >>> import pprint >>> neville_interpolate((1,2,3,4,6), (6,7,8,9,11), 5)[0] 10.0 >>> pprint.pprint(neville_interpolate((1,2,3,4,6), (6,7,8,9,11), 99)[1]) [[0, 6, 0, 0, 0], [0, 7, 0, 0, 0], [0, 8, 104.0, 0, 0], [0, 9, 104.0, 104.0, 0], [0, 11, 104.0, 104.0, 104.0]] >>> neville_interpolate((1,2,3,4,6), (6,7,8,9,11), 99)[0] 104.0 >>> neville_interpolate((1,2,3,4,6), (6,7,8,9,11), '') Traceback (most recent call last): ... TypeError: unsupported operand type(s) for -: 'str' and 'int' """ n = len(x_points) q = [[0] * n for i in range(n)] for i in range(n): q[i][1] = y_points[i] for i in range(2, n): for j in range(i, n): q[j][i] = ( (x0 - x_points[j - i + 1]) * q[j][i - 1] - (x0 - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()