# Random Forest Classifier Example from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import plot_confusion_matrix import matplotlib.pyplot as plt def main(): """ Random Tree Classifier Example using sklearn function. Iris type dataset is used to demonstrate algorithm. """ # Load Iris house price dataset iris = load_iris() # Split dataset into train and test data X = iris["data"] # features Y = iris["target"] x_train, x_test, y_train, y_test = train_test_split( X, Y, test_size=0.3, random_state=1 ) # Random Forest Classifier rand_for = RandomForestClassifier(random_state=42, n_estimators=100) rand_for.fit(x_train, y_train) # Display Confusion Matrix of Classifier plot_confusion_matrix( rand_for, x_test, y_test, display_labels=iris["target_names"], cmap="Blues", normalize="true", ) plt.title("Normalized Confusion Matrix - IRIS Dataset") plt.show() if __name__ == "__main__": main()