""" This script demonstrates the implementation of the tangent hyperbolic or tanh function. The function takes a vector of K real numbers as input and then (e^x - e^(-x))/(e^x + e^(-x)). After through tanh, the element of the vector mostly -1 between 1. Script inspired from its corresponding Wikipedia article https://en.wikipedia.org/wiki/Activation_function """ import numpy as np def tangent_hyperbolic(vector: np.array) -> np.array: """ Implements the tanh function Parameters: vector: np.array Returns: tanh (np.array): The input numpy array after applying tanh. mathematically (e^x - e^(-x))/(e^x + e^(-x)) can be written as (2/(1+e^(-2x))-1 Examples: >>> tangent_hyperbolic(np.array([1,5,6,-0.67])) array([ 0.76159416, 0.9999092 , 0.99998771, -0.58497988]) """ exp_vector = np.exp(-2 * vector) return (2 / (1 + exp_vector)) - 1 if __name__ == "__main__": import doctest doctest.testmod()