def bailey_borwein_plouffe(digit_position: int, precision: int = 1000) -> str: """ Implement a popular pi-digit-extraction algorithm known as the Bailey-Borwein-Plouffe (BBP) formula to calculate the nth hex digit of pi. Wikipedia page: https://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula @param digit_position: a positive integer representing the position of the digit to extract. The digit immediately after the decimal point is located at position 1. @param precision: number of terms in the second summation to calculate. A higher number reduces the chance of an error but increases the runtime. @return: a hexadecimal digit representing the digit at the nth position in pi's decimal expansion. >>> "".join(bailey_borwein_plouffe(i) for i in range(1, 11)) '243f6a8885' >>> bailey_borwein_plouffe(5, 10000) '6' >>> bailey_borwein_plouffe(-10) Traceback (most recent call last): ... ValueError: Digit position must be a positive integer >>> bailey_borwein_plouffe(0) Traceback (most recent call last): ... ValueError: Digit position must be a positive integer >>> bailey_borwein_plouffe(1.7) Traceback (most recent call last): ... ValueError: Digit position must be a positive integer >>> bailey_borwein_plouffe(2, -10) Traceback (most recent call last): ... ValueError: Precision must be a nonnegative integer >>> bailey_borwein_plouffe(2, 1.6) Traceback (most recent call last): ... ValueError: Precision must be a nonnegative integer """ if (not isinstance(digit_position, int)) or (digit_position <= 0): raise ValueError("Digit position must be a positive integer") elif (not isinstance(precision, int)) or (precision < 0): raise ValueError("Precision must be a nonnegative integer") # compute an approximation of (16 ** (n - 1)) * pi whose fractional part is mostly # accurate sum_result = ( 4 * _subsum(digit_position, 1, precision) - 2 * _subsum(digit_position, 4, precision) - _subsum(digit_position, 5, precision) - _subsum(digit_position, 6, precision) ) # return the first hex digit of the fractional part of the result return hex(int((sum_result % 1) * 16))[2:] def _subsum( digit_pos_to_extract: int, denominator_addend: int, precision: int ) -> float: # only care about first digit of fractional part; don't need decimal """ Private helper function to implement the summation functionality. @param digit_pos_to_extract: digit position to extract @param denominator_addend: added to denominator of fractions in the formula @param precision: same as precision in main function @return: floating-point number whose integer part is not important """ sum = 0.0 for sum_index in range(digit_pos_to_extract + precision): denominator = 8 * sum_index + denominator_addend if sum_index < digit_pos_to_extract: # if the exponential term is an integer and we mod it by the denominator # before dividing, only the integer part of the sum will change; # the fractional part will not exponential_term = pow( 16, digit_pos_to_extract - 1 - sum_index, denominator ) else: exponential_term = pow(16, digit_pos_to_extract - 1 - sum_index) sum += exponential_term / denominator return sum if __name__ == "__main__": import doctest doctest.testmod()