# Modular Division : # An efficient algorithm for dividing b by a modulo n. # GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) # Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should return an integer x such that # 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)). # Theorem: # a has a multiplicative inverse modulo n iff gcd(a,n) = 1 # This find x = b*a^(-1) mod n # Uses ExtendedEuclid to find the inverse of a def modular_division(a, b, n): """ >>> modular_division(4,8,5) 2 >>> modular_division(3,8,5) 1 >>> modular_division(4, 11, 5) 4 """ assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1 (d, t, s) = extended_gcd(n, a) # Implemented below x = (b * s) % n return x # This function find the inverses of a i.e., a^(-1) def invert_modulo(a, n): """ >>> invert_modulo(2, 5) 3 >>> invert_modulo(8,7) 1 """ (b, x) = extended_euclid(a, n) # Implemented below if b < 0: b = (b % n + n) % n return b # ------------------ Finding Modular division using invert_modulo ------------------- # This function used the above inversion of a to find x = (b*a^(-1))mod n def modular_division2(a, b, n): """ >>> modular_division2(4,8,5) 2 >>> modular_division2(3,8,5) 1 >>> modular_division2(4, 11, 5) 4 """ s = invert_modulo(a, n) x = (b * s) % n return x # Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b) def extended_gcd(a, b): """ >>> extended_gcd(10, 6) (2, -1, 2) >>> extended_gcd(7, 5) (1, -2, 3) ** extended_gcd function is used when d = gcd(a,b) is required in output """ assert a >= 0 and b >= 0 if b == 0: d, x, y = a, 1, 0 else: (d, p, q) = extended_gcd(b, a % b) x = q y = p - q * (a // b) assert a % d == 0 and b % d == 0 assert d == a * x + b * y return (d, x, y) # Extended Euclid def extended_euclid(a, b): """ >>> extended_euclid(10, 6) (-1, 2) >>> extended_euclid(7, 5) (-2, 3) """ if b == 0: return (1, 0) (x, y) = extended_euclid(b, a % b) k = a // b return (y, x - k * y) # Euclid's Lemma : d divides a and b, if and only if d divides a-b and b # Euclid's Algorithm def greatest_common_divisor(a, b): """ >>> greatest_common_divisor(7,5) 1 Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1. >>> greatest_common_divisor(121, 11) 11 """ if a < b: a, b = b, a while a % b != 0: a, b = b, a % b return b if __name__ == "__main__": from doctest import testmod testmod(name="modular_division", verbose=True) testmod(name="modular_division2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_gcd", verbose=True) testmod(name="extended_euclid", verbose=True) testmod(name="greatest_common_divisor", verbose=True)