""" Created on Mon Feb 26 14:29:11 2018 @author: Christian Bender @license: MIT-license This module contains some useful classes and functions for dealing with linear algebra in python. Overview: - class Vector - function zeroVector(dimension) - function unitBasisVector(dimension,pos) - function axpy(scalar,vector1,vector2) - function randomVector(N,a,b) - class Matrix - function squareZeroMatrix(N) - function randomMatrix(W,H,a,b) """ from __future__ import annotations import math import random from typing import Collection, overload class Vector: """ This class represents a vector of arbitrary size. You need to give the vector components. Overview about the methods: constructor(components : list) : init the vector set(components : list) : changes the vector components. __str__() : toString method component(i : int): gets the i-th component (start by 0) __len__() : gets the size of the vector (number of components) euclidLength() : returns the euclidean length of the vector. operator + : vector addition operator - : vector subtraction operator * : scalar multiplication and dot product copy() : copies this vector and returns it. changeComponent(pos,value) : changes the specified component. TODO: compare-operator """ def __init__(self, components: Collection[float] | None = None) -> None: """ input: components or nothing simple constructor for init the vector """ if components is None: components = [] self.__components = list(components) def set(self, components: Collection[float]) -> None: """ input: new components changes the components of the vector. replace the components with newer one. """ if len(components) > 0: self.__components = list(components) else: raise Exception("please give any vector") def __str__(self) -> str: """ returns a string representation of the vector """ return "(" + ",".join(map(str, self.__components)) + ")" def component(self, i: int) -> float: """ input: index (start at 0) output: the i-th component of the vector. """ if type(i) is int and -len(self.__components) <= i < len(self.__components): return self.__components[i] else: raise Exception("index out of range") def __len__(self) -> int: """ returns the size of the vector """ return len(self.__components) def euclidLength(self) -> float: """ returns the euclidean length of the vector """ summe: float = 0 for c in self.__components: summe += c ** 2 return math.sqrt(summe) def __add__(self, other: Vector) -> Vector: """ input: other vector assumes: other vector has the same size returns a new vector that represents the sum. """ size = len(self) if size == len(other): result = [self.__components[i] + other.component(i) for i in range(size)] return Vector(result) else: raise Exception("must have the same size") def __sub__(self, other: Vector) -> Vector: """ input: other vector assumes: other vector has the same size returns a new vector that represents the difference. """ size = len(self) if size == len(other): result = [self.__components[i] - other.component(i) for i in range(size)] return Vector(result) else: # error case raise Exception("must have the same size") @overload def __mul__(self, other: float) -> Vector: ... @overload def __mul__(self, other: Vector) -> float: ... def __mul__(self, other: float | Vector) -> float | Vector: """ mul implements the scalar multiplication and the dot-product """ if isinstance(other, float) or isinstance(other, int): ans = [c * other for c in self.__components] return Vector(ans) elif isinstance(other, Vector) and (len(self) == len(other)): size = len(self) summe: float = 0 for i in range(size): summe += self.__components[i] * other.component(i) return summe else: # error case raise Exception("invalid operand!") def copy(self) -> Vector: """ copies this vector and returns it. """ return Vector(self.__components) def changeComponent(self, pos: int, value: float) -> None: """ input: an index (pos) and a value changes the specified component (pos) with the 'value' """ # precondition assert -len(self.__components) <= pos < len(self.__components) self.__components[pos] = value def zeroVector(dimension: int) -> Vector: """ returns a zero-vector of size 'dimension' """ # precondition assert isinstance(dimension, int) return Vector([0] * dimension) def unitBasisVector(dimension: int, pos: int) -> Vector: """ returns a unit basis vector with a One at index 'pos' (indexing at 0) """ # precondition assert isinstance(dimension, int) and (isinstance(pos, int)) ans = [0] * dimension ans[pos] = 1 return Vector(ans) def axpy(scalar: float, x: Vector, y: Vector) -> Vector: """ input: a 'scalar' and two vectors 'x' and 'y' output: a vector computes the axpy operation """ # precondition assert ( isinstance(x, Vector) and (isinstance(y, Vector)) and (isinstance(scalar, int) or isinstance(scalar, float)) ) return x * scalar + y def randomVector(N: int, a: int, b: int) -> Vector: """ input: size (N) of the vector. random range (a,b) output: returns a random vector of size N, with random integer components between 'a' and 'b'. """ random.seed(None) ans = [random.randint(a, b) for _ in range(N)] return Vector(ans) class Matrix: """ class: Matrix This class represents a arbitrary matrix. Overview about the methods: __str__() : returns a string representation operator * : implements the matrix vector multiplication implements the matrix-scalar multiplication. changeComponent(x,y,value) : changes the specified component. component(x,y) : returns the specified component. width() : returns the width of the matrix height() : returns the height of the matrix operator + : implements the matrix-addition. operator - _ implements the matrix-subtraction """ def __init__(self, matrix: list[list[float]], w: int, h: int) -> None: """ simple constructor for initializing the matrix with components. """ self.__matrix = matrix self.__width = w self.__height = h def __str__(self) -> str: """ returns a string representation of this matrix. """ ans = "" for i in range(self.__height): ans += "|" for j in range(self.__width): if j < self.__width - 1: ans += str(self.__matrix[i][j]) + "," else: ans += str(self.__matrix[i][j]) + "|\n" return ans def changeComponent(self, x: int, y: int, value: float) -> None: """ changes the x-y component of this matrix """ if 0 <= x < self.__height and 0 <= y < self.__width: self.__matrix[x][y] = value else: raise Exception("changeComponent: indices out of bounds") def component(self, x: int, y: int) -> float: """ returns the specified (x,y) component """ if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("changeComponent: indices out of bounds") def width(self) -> int: """ getter for the width """ return self.__width def height(self) -> int: """ getter for the height """ return self.__height def determinate(self) -> float: """ returns the determinate of an nxn matrix using Laplace expansion """ if self.__height == self.__width and self.__width >= 2: total = 0 if self.__width > 2: for x in range(0, self.__width): for y in range(0, self.__height): total += ( self.__matrix[x][y] * (-1) ** (x + y) * Matrix( self.__matrix[0:x] + self.__matrix[x + 1 :], self.__width - 1, self.__height - 1, ).determinate() ) else: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) return total else: raise Exception("matrix is not square") @overload def __mul__(self, other: float) -> Matrix: ... @overload def __mul__(self, other: Vector) -> Vector: ... def __mul__(self, other: float | Vector) -> Vector | Matrix: """ implements the matrix-vector multiplication. implements the matrix-scalar multiplication """ if isinstance(other, Vector): # vector-matrix if len(other) == self.__width: ans = zeroVector(self.__height) for i in range(self.__height): summe: float = 0 for j in range(self.__width): summe += other.component(j) * self.__matrix[i][j] ans.changeComponent(i, summe) summe = 0 return ans else: raise Exception( "vector must have the same size as the " + "number of columns of the matrix!" ) elif isinstance(other, int) or isinstance(other, float): # matrix-scalar matrix = [ [self.__matrix[i][j] * other for j in range(self.__width)] for i in range(self.__height) ] return Matrix(matrix, self.__width, self.__height) def __add__(self, other: Matrix) -> Matrix: """ implements the matrix-addition. """ if self.__width == other.width() and self.__height == other.height(): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] + other.component(i, j)) matrix.append(row) return Matrix(matrix, self.__width, self.__height) else: raise Exception("matrix must have the same dimension!") def __sub__(self, other: Matrix) -> Matrix: """ implements the matrix-subtraction. """ if self.__width == other.width() and self.__height == other.height(): matrix = [] for i in range(self.__height): row = [] for j in range(self.__width): row.append(self.__matrix[i][j] - other.component(i, j)) matrix.append(row) return Matrix(matrix, self.__width, self.__height) else: raise Exception("matrix must have the same dimension!") def squareZeroMatrix(N: int) -> Matrix: """ returns a square zero-matrix of dimension NxN """ ans: list[list[float]] = [[0] * N for _ in range(N)] return Matrix(ans, N, N) def randomMatrix(W: int, H: int, a: int, b: int) -> Matrix: """ returns a random matrix WxH with integer components between 'a' and 'b' """ random.seed(None) matrix: list[list[float]] = [ [random.randint(a, b) for _ in range(W)] for _ in range(H) ] return Matrix(matrix, W, H)