"""The DFS function simply calls itself recursively for every unvisited child of its argument. We can emulate that behaviour precisely using a stack of iterators. Instead of recursively calling with a node, we'll push an iterator to the node's children onto the iterator stack. When the iterator at the top of the stack terminates, we'll pop it off the stack. Pseudocode: all nodes initially unexplored mark s as explored for every edge (s, v): if v unexplored: DFS(G, v) """ from typing import Set, Dict def depth_first_search(graph: Dict, start: str) -> Set[int]: """Depth First Search on Graph :param graph: directed graph in dictionary format :param vertex: starting vectex as a string :returns: the trace of the search >>> G = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], ... "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], ... "F": ["C", "E", "G"], "G": ["F"] } >>> start = "A" >>> output_G = list({'A', 'B', 'C', 'D', 'E', 'F', 'G'}) >>> all(x in output_G for x in list(depth_first_search(G, "A"))) True >>> all(x in output_G for x in list(depth_first_search(G, "G"))) True """ explored, stack = set(start), [start] while stack: v = stack.pop() # one difference from BFS is to pop last element here instead of first one for w in graph[v]: if w not in explored: explored.add(w) stack.append(w) return explored G = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))