""" Mean Squared Logarithmic Error (MSLE) Loss Function Description: MSLE measures the mean squared logarithmic difference between true values and predicted values, particularly useful when dealing with regression problems involving skewed or large-value targets. It is often used when the relative differences between predicted and true values are more important than absolute differences. Formula: MSLE = (1/n) * Σ(log(1 + y_true) - log(1 + y_pred))^2 Source: (https://insideaiml.com/blog/MeanSquared-Logarithmic-Error-Loss-1035) """ import numpy as np def mean_squared_logarithmic_error(y_true: np.ndarray, y_pred: np.ndarray) -> float: """ Calculate the Mean Squared Logarithmic Error (MSLE) between two arrays. Parameters: - y_true: The true values (ground truth). - y_pred: The predicted values. Returns: - msle: The Mean Squared Logarithmic Error between y_true and y_pred. Example usage: >>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0]) >>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2]) >>> mean_squared_logarithmic_error(true_values, predicted_values) 0.0030860877925181344 >>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0]) >>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2]) >>> mean_squared_logarithmic_error(true_labels, predicted_probs) Traceback (most recent call last): ... ValueError: Input arrays must have the same length. """ if len(y_true) != len(y_pred): raise ValueError("Input arrays must have the same length.") squared_logarithmic_errors = (np.log1p(y_true) - np.log1p(y_pred)) ** 2 return np.mean(squared_logarithmic_errors) if __name__ == "__main__": import doctest doctest.testmod()