import heapq import sys # First implementation of johnson algorithm # Steps followed to implement this algorithm is given in the below link: # https://brilliant.org/wiki/johnsons-algorithm/ class JohnsonGraph: def __init__(self) -> None: self.edges: list[str] = [] self.graph: dict[str, list] = {} # add vertices for a graph def add_vertices(self, u:int) -> None: self.graph[u] = [] # assign weights for each edges formed of the directed graph def add_edge(self, u:str, v:str, w:int) -> None: self.edges.append((u, v, w)) self.graph[u].append((v, w)) # perform a dijkstra algorithm on a directed graph def dijkstra(self, s:str) -> dict: distances = {vertex: sys.maxsize - 1 for vertex in self.graph} pq = [(0, s)] distances[s] = 0 while pq: weight, v = heapq.heappop(pq) if weight > distances[v]: continue for node, w in self.graph[v]: if distances[v] + w < distances[node]: distances[node] = distances[v] + w heapq.heappush(pq, (distances[node], node)) return distances # carry out the bellman ford algorithm for a node and estimate its distance vector def bellman_ford(self, s:str) -> dict: distances = {vertex: sys.maxsize - 1 for vertex in self.graph} distances[s] = 0 for u in self.graph: for u, v, w in self.edges: if distances[u] != sys.maxsize - 1 and distances[u] + w < distances[v]: distances[v] = distances[u] + w return distances # perform the johnson algorithm to handle the negative weights that # could not be handled by either the dijkstra # or the bellman ford algorithm efficiently def johnson_algo(self) -> list[dict]: self.add_vertices("#") for v in self.graph: if v != "#": self.add_edge("#", v, 0) n = self.bellman_ford("#") for i in range(len(self.edges)): u, v, weight = self.edges[i] self.edges[i] = (u, v, weight + n[u] - n[v]) self.graph.pop("#") self.edges = [(u, v, w) for u, v, w in self.edges if u != "#"] for u in self.graph: self.graph[u] = [(v, weight) for x, v, weight in self.edges if x == u] distances = [] for u in self.graph: new_dist = self.dijkstra(u) for v in self.graph: if new_dist[v] < sys.maxsize - 1: new_dist[v] += n[v] - n[u] distances.append(new_dist) return distances g = JohnsonGraph() # this a complete connected graph g.add_vertices("A") g.add_vertices("B") g.add_vertices("C") g.add_vertices("D") g.add_vertices("E") g.add_edge("A", "B", 1) g.add_edge("A", "C", 3) g.add_edge("B", "D", 4) g.add_edge("D", "E", 2) g.add_edge("E", "C", -2) optimal_paths = g.johnson_algo() print("Print all optimal paths of a graph using Johnson Algorithm") for i, row in enumerate(optimal_paths): print(f"{i}: {row}")