""" Leaky Rectified Linear Unit (LeakyReLU) Input: vector (type: np.ndarray) , alpha (type: float) Output: vector (type: np.ndarray) UseCase: LeakyReLU solves the issue of dead neurons or vanishing gradient problem. Refer the below link for more information: https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLU Applications: Generative Adversarial Networks (GANs) Object Detection and Image Segmentation """ import numpy as np def leaky_rectified_linear_unit(vector: np.ndarray, alpha: float) -> np.ndarray: """ Implements the LeakyReLU activation function. Parameters: vector: the array containing input of leakyReLu activation alpha: hyperparameter return: leaky_relu (np.array): The input numpy array after applying leakyReLu. Formula : f(x) = x if x > 0 else f(x) = alpha * x Examples: >>> leaky_rectified_linear_unit(vector=np.array([2.3,0.6,-2,-3.8]), alpha=0.3) array([ 2.3 , 0.6 , -0.6 , -1.14]) >>> leaky_rectified_linear_unit(vector=np.array([-9.2,-0.3,0.45,-4.56]), \ alpha=0.067) array([-0.6164 , -0.0201 , 0.45 , -0.30552]) """ return np.where(vector > 0, vector, alpha * vector) if __name__ == "__main__": import doctest doctest.testmod()