""" Hill Cipher: The below defined class 'HillCipher' implements the Hill Cipher algorithm. The Hill Cipher is an algorithm that implements modern linear algebra techniques In this algorithm, you have an encryption key matrix. This is what will be used in encoding and decoding your text. Algorithm: Let the order of the encryption key be N (as it is a square matrix). Your text is divided into batches of length N and converted to numerical vectors by a simple mapping starting with A=0 and so on. The key is then multiplied with the newly created batch vector to obtain the encoded vector. After each multiplication modular 36 calculations are performed on the vectors so as to bring the numbers between 0 and 36 and then mapped with their corresponding alphanumerics. While decrypting, the decrypting key is found which is the inverse of the encrypting key modular 36. The same process is repeated for decrypting to get the original message back. Constraints: The determinant of the encryption key matrix must be relatively prime w.r.t 36. Note: The algorithm implemented in this code considers only alphanumerics in the text. If the length of the text to be encrypted is not a multiple of the break key(the length of one batch of letters),the last character of the text is added to the text until the length of the text reaches a multiple of the break_key. So the text after decrypting might be a little different than the original text. References: https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf https://www.youtube.com/watch?v=kfmNeskzs2o https://www.youtube.com/watch?v=4RhLNDqcjpA """ import numpy def gcd(a, b): if a == 0: return b return gcd(b % a, a) class HillCipher: key_string = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" # This cipher takes alphanumerics into account # i.e. a total of 36 characters replaceLetters = lambda self, letter: self.key_string.index(letter) replaceNumbers = lambda self, num: self.key_string[round(num)] # take x and return x % len(key_string) modulus = numpy.vectorize(lambda x: x % 36) toInt = numpy.vectorize(lambda x: round(x)) def __init__(self, encrypt_key): """ encrypt_key is an NxN numpy matrix """ self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key self.decrypt_key = None self.break_key = encrypt_key.shape[0] def check_determinant(self): det = round(numpy.linalg.det(self.encrypt_key)) if det < 0: det = det % len(self.key_string) req_l = len(self.key_string) if gcd(det, len(self.key_string)) != 1: raise ValueError( "discriminant modular {} of encryption key({}) is not co prime w.r.t {}.\nTry another key.".format( req_l, det, req_l ) ) def process_text(self, text): text = list(text.upper()) text = [char for char in text if char in self.key_string] last = text[-1] while len(text) % self.break_key != 0: text.append(last) return "".join(text) def encrypt(self, text): text = self.process_text(text.upper()) encrypted = "" for i in range(0, len(text) - self.break_key + 1, self.break_key): batch = text[i : i + self.break_key] batch_vec = list(map(self.replaceLetters, batch)) batch_vec = numpy.matrix([batch_vec]).T batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[ 0 ] encrypted_batch = "".join(list(map(self.replaceNumbers, batch_encrypted))) encrypted += encrypted_batch return encrypted def make_decrypt_key(self): det = round(numpy.linalg.det(self.encrypt_key)) if det < 0: det = det % len(self.key_string) det_inv = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: det_inv = i break inv_key = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.toInt(self.modulus(inv_key)) def decrypt(self, text): self.decrypt_key = self.make_decrypt_key() text = self.process_text(text.upper()) decrypted = "" for i in range(0, len(text) - self.break_key + 1, self.break_key): batch = text[i : i + self.break_key] batch_vec = list(map(self.replaceLetters, batch)) batch_vec = numpy.matrix([batch_vec]).T batch_decrypted = self.modulus(self.decrypt_key.dot(batch_vec)).T.tolist()[ 0 ] decrypted_batch = "".join(list(map(self.replaceNumbers, batch_decrypted))) decrypted += decrypted_batch return decrypted def main(): N = int(input("Enter the order of the encryption key: ")) hill_matrix = [] print("Enter each row of the encryption key with space separated integers") for i in range(N): row = list(map(int, input().split())) hill_matrix.append(row) hc = HillCipher(numpy.matrix(hill_matrix)) print("Would you like to encrypt or decrypt some text? (1 or 2)") option = input( """ 1. Encrypt 2. Decrypt """ ) if option == "1": text_e = input("What text would you like to encrypt?: ") print("Your encrypted text is:") print(hc.encrypt(text_e)) elif option == "2": text_d = input("What text would you like to decrypt?: ") print("Your decrypted text is:") print(hc.decrypt(text_d)) if __name__ == "__main__": main()