# An OOP approach to representing and manipulating matrices from __future__ import annotations class Matrix: """ Matrix object generated from a 2D array where each element is an array representing a row. Rows can contain type int or float. Common operations and information available. >>> rows = [ ... [1, 2, 3], ... [4, 5, 6], ... [7, 8, 9] ... ] >>> matrix = Matrix(rows) >>> print(matrix) [[1. 2. 3.] [4. 5. 6.] [7. 8. 9.]] Matrix rows and columns are available as 2D arrays >>> print(matrix.rows) [[1, 2, 3], [4, 5, 6], [7, 8, 9]] >>> print(matrix.columns()) [[1, 4, 7], [2, 5, 8], [3, 6, 9]] Order is returned as a tuple >>> matrix.order (3, 3) Squareness and invertability are represented as bool >>> matrix.is_square True >>> matrix.is_invertable() False Identity, Minors, Cofactors and Adjugate are returned as Matrices. Inverse can be a Matrix or Nonetype >>> print(matrix.identity()) [[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] >>> print(matrix.minors()) [[-3. -6. -3.] [-6. -12. -6.] [-3. -6. -3.]] >>> print(matrix.cofactors()) [[-3. 6. -3.] [6. -12. 6.] [-3. 6. -3.]] >>> # won't be apparent due to the nature of the cofactor matrix >>> print(matrix.adjugate()) [[-3. 6. -3.] [6. -12. 6.] [-3. 6. -3.]] >>> print(matrix.inverse()) Traceback (most recent call last): ... TypeError: Only matrices with a non-zero determinant have an inverse Determinant is an int, float, or Nonetype >>> matrix.determinant() 0 Negation, scalar multiplication, addition, subtraction, multiplication and exponentiation are available and all return a Matrix >>> print(-matrix) [[-1. -2. -3.] [-4. -5. -6.] [-7. -8. -9.]] >>> matrix2 = matrix * 3 >>> print(matrix2) [[3. 6. 9.] [12. 15. 18.] [21. 24. 27.]] >>> print(matrix + matrix2) [[4. 8. 12.] [16. 20. 24.] [28. 32. 36.]] >>> print(matrix - matrix2) [[-2. -4. -6.] [-8. -10. -12.] [-14. -16. -18.]] >>> print(matrix ** 3) [[468. 576. 684.] [1062. 1305. 1548.] [1656. 2034. 2412.]] Matrices can also be modified >>> matrix.add_row([10, 11, 12]) >>> print(matrix) [[1. 2. 3.] [4. 5. 6.] [7. 8. 9.] [10. 11. 12.]] >>> matrix2.add_column([8, 16, 32]) >>> print(matrix2) [[3. 6. 9. 8.] [12. 15. 18. 16.] [21. 24. 27. 32.]] >>> print(matrix * matrix2) [[90. 108. 126. 136.] [198. 243. 288. 304.] [306. 378. 450. 472.] [414. 513. 612. 640.]] """ def __init__(self, rows: list[list[int]]): error = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(rows) != 0: cols = len(rows[0]) if cols == 0: raise error for row in rows: if len(row) != cols: raise error for value in row: if not isinstance(value, (int, float)): raise error self.rows = rows else: self.rows = [] # MATRIX INFORMATION def columns(self) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def num_rows(self) -> int: return len(self.rows) @property def num_columns(self) -> int: return len(self.rows[0]) @property def order(self) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def is_square(self) -> bool: return self.order[0] == self.order[1] def identity(self) -> Matrix: values = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(values) def determinant(self) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns) ) def is_invertable(self) -> bool: return bool(self.determinant()) def get_minor(self, row: int, column: int) -> int: values = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(values).determinant() def get_cofactor(self, row: int, column: int) -> int: if (row + column) % 2 == 0: return self.get_minor(row, column) return -1 * self.get_minor(row, column) def minors(self) -> Matrix: return Matrix( [ [self.get_minor(row, column) for column in range(self.num_columns)] for row in range(self.num_rows) ] ) def cofactors(self) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ] ) def adjugate(self) -> Matrix: values = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(values) def inverse(self) -> Matrix: determinant = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse") return self.adjugate() * (1 / determinant) def __repr__(self) -> str: return str(self.rows) def __str__(self) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(value) for value in row]) + ".]" for row in self.rows ] ) + "]" ) # MATRIX MANIPULATION def add_row(self, row: list[int], position: int | None = None) -> None: type_error = TypeError("Row must be a list containing all ints and/or floats") if not isinstance(row, list): raise type_error for value in row: if not isinstance(value, (int, float)): raise type_error if len(row) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(row) else: self.rows = self.rows[0:position] + [row] + self.rows[position:] def add_column(self, column: list[int], position: int | None = None) -> None: type_error = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(column, list): raise type_error for value in column: if not isinstance(value, (int, float)): raise type_error if len(column) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: self.rows = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: self.rows = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] # MATRIX OPERATIONS def __eq__(self, other: object) -> bool: if not isinstance(other, Matrix): return NotImplemented return self.rows == other.rows def __ne__(self, other: object) -> bool: return not self == other def __neg__(self) -> Matrix: return self * -1 def __add__(self, other: Matrix) -> Matrix: if self.order != other.order: raise ValueError("Addition requires matrices of the same order") return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ] ) def __sub__(self, other: Matrix) -> Matrix: if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order") return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ] ) def __mul__(self, other: Matrix | int | float) -> Matrix: if isinstance(other, (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows] ) elif isinstance(other, Matrix): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(row, column) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__(self, other: int) -> Matrix: if not isinstance(other, int): raise TypeError("A Matrix can only be raised to the power of an int") if not self.is_square: raise ValueError("Only square matrices can be raised to a power") if other == 0: return self.identity() if other < 0: if self.is_invertable: return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) result = self for _ in range(other - 1): result *= self return result @classmethod def dot_product(cls, row: list[int], column: list[int]) -> int: return sum(row[i] * column[i] for i in range(len(row))) if __name__ == "__main__": import doctest doctest.testmod()