""" Numerical integration or quadrature for a smooth function f with known values at x_i """ def trapezoidal_rule(boundary, steps): """ Implements the extended trapezoidal rule for numerical integration. The function f(x) is provided below. :param boundary: List containing the lower and upper bounds of integration [a, b] :param steps: The number of steps (intervals) used in the approximation :return: The numerical approximation of the integral >>> abs(trapezoidal_rule([0, 1], 10) - 0.33333) < 0.01 True >>> abs(trapezoidal_rule([0, 1], 100) - 0.33333) < 0.01 True >>> abs(trapezoidal_rule([0, 2], 1000) - 2.66667) < 0.01 True >>> abs(trapezoidal_rule([1, 2], 1000) - 2.33333) < 0.01 True """ h = (boundary[1] - boundary[0]) / steps a = boundary[0] b = boundary[1] x_i = make_points(a, b, h) y = 0.0 y += (h / 2.0) * f(a) for i in x_i: y += h * f(i) y += (h / 2.0) * f(b) return y def make_points(a, b, h): """ Generates points between a and b with step size h for trapezoidal integration. :param a: The lower bound of integration :param b: The upper bound of integration :param h: The step size :yield: The next x-value in the range (a, b) >>> list(make_points(0, 1, 0.1)) # doctest: +NORMALIZE_WHITESPACE [0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7, 0.7999999999999999, \ 0.8999999999999999] >>> list(make_points(0, 10, 2.5)) [2.5, 5.0, 7.5] >>> list(make_points(0, 10, 2)) [2, 4, 6, 8] >>> list(make_points(1, 21, 5)) [6, 11, 16] >>> list(make_points(1, 5, 2)) [3] >>> list(make_points(1, 4, 3)) [] """ x = a + h while x <= (b - h): yield x x += h def f(x): """ This is the function to integrate, f(x) = (x - 0)^2 = x^2. :param x: The input value :return: The value of f(x) >>> f(0) 0 >>> f(1) 1 >>> f(0.5) 0.25 """ return x**2 def main(): """ Main function to test the trapezoidal rule. :a: Lower bound of integration :b: Upper bound of integration :steps: define number of steps or resolution :boundary: define boundary of integration >>> main() y = 0.3349999999999999 """ a = 0.0 b = 1.0 steps = 10.0 boundary = [a, b] y = trapezoidal_rule(boundary, steps) print(f"y = {y}") if __name__ == "__main__": import doctest doctest.testmod() main()