"""README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com) Requirements: - sklearn - numpy - matplotlib Python: - 3.5 Inputs: - X , a 2D numpy array of features. - k , number of clusters to create. - initial_centroids , initial centroid values generated by utility function(mentioned in usage). - maxiter , maximum number of iterations to process. - heterogeneity , empty list that will be filled with hetrogeneity values if passed to kmeans func. Usage: 1. define 'k' value, 'X' features array and 'hetrogeneity' empty list 2. create initial_centroids, initial_centroids = get_initial_centroids( X, k, seed=0 # seed value for initial centroid generation, # None for randomness(default=None) ) 3. find centroids and clusters using kmeans function. centroids, cluster_assignment = kmeans( X, k, initial_centroids, maxiter=400, record_heterogeneity=heterogeneity, verbose=True # whether to print logs in console or not.(default=False) ) 4. Plot the loss function, hetrogeneity values for every iteration saved in hetrogeneity list. plot_heterogeneity( heterogeneity, k ) 5. Transfers Dataframe into excel format it must have feature called 'Clust' with k means clustering numbers in it. """ import warnings import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.metrics import pairwise_distances warnings.filterwarnings("ignore") TAG = "K-MEANS-CLUST/ " def get_initial_centroids(data, k, seed=None): """Randomly choose k data points as initial centroids""" if seed is not None: # useful for obtaining consistent results np.random.seed(seed) n = data.shape[0] # number of data points # Pick K indices from range [0, N). rand_indices = np.random.randint(0, n, k) # Keep centroids as dense format, as many entries will be nonzero due to averaging. # As long as at least one document in a cluster contains a word, # it will carry a nonzero weight in the TF-IDF vector of the centroid. centroids = data[rand_indices, :] return centroids def centroid_pairwise_dist(X, centroids): return pairwise_distances(X, centroids, metric="euclidean") def assign_clusters(data, centroids): # Compute distances between each data point and the set of centroids: # Fill in the blank (RHS only) distances_from_centroids = centroid_pairwise_dist(data, centroids) # Compute cluster assignments for each data point: # Fill in the blank (RHS only) cluster_assignment = np.argmin(distances_from_centroids, axis=1) return cluster_assignment def revise_centroids(data, k, cluster_assignment): new_centroids = [] for i in range(k): # Select all data points that belong to cluster i. Fill in the blank (RHS only) member_data_points = data[cluster_assignment == i] # Compute the mean of the data points. Fill in the blank (RHS only) centroid = member_data_points.mean(axis=0) new_centroids.append(centroid) new_centroids = np.array(new_centroids) return new_centroids def compute_heterogeneity(data, k, centroids, cluster_assignment): heterogeneity = 0.0 for i in range(k): # Select all data points that belong to cluster i. Fill in the blank (RHS only) member_data_points = data[cluster_assignment == i, :] if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty # Compute distances from centroid to data points (RHS only) distances = pairwise_distances( member_data_points, [centroids[i]], metric="euclidean" ) squared_distances = distances ** 2 heterogeneity += np.sum(squared_distances) return heterogeneity def plot_heterogeneity(heterogeneity, k): plt.figure(figsize=(7, 4)) plt.plot(heterogeneity, linewidth=4) plt.xlabel("# Iterations") plt.ylabel("Heterogeneity") plt.title(f"Heterogeneity of clustering over time, K={k:d}") plt.rcParams.update({"font.size": 16}) plt.show() def kmeans( data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False ): """This function runs k-means on given data and initial set of centroids. maxiter: maximum number of iterations to run.(default=500) record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations if None, do not store the history. verbose: if True, print how many data points changed their cluster labels in each iteration""" centroids = initial_centroids[:] prev_cluster_assignment = None for itr in range(maxiter): if verbose: print(itr, end="") # 1. Make cluster assignments using nearest centroids cluster_assignment = assign_clusters(data, centroids) # 2. Compute a new centroid for each of the k clusters, averaging all data # points assigned to that cluster. centroids = revise_centroids(data, k, cluster_assignment) # Check for convergence: if none of the assignments changed, stop if ( prev_cluster_assignment is not None and (prev_cluster_assignment == cluster_assignment).all() ): break # Print number of new assignments if prev_cluster_assignment is not None: num_changed = np.sum(prev_cluster_assignment != cluster_assignment) if verbose: print( " {:5d} elements changed their cluster assignment.".format( num_changed ) ) # Record heterogeneity convergence metric if record_heterogeneity is not None: # YOUR CODE HERE score = compute_heterogeneity(data, k, centroids, cluster_assignment) record_heterogeneity.append(score) prev_cluster_assignment = cluster_assignment[:] return centroids, cluster_assignment # Mock test below if False: # change to true to run this test case. from sklearn import datasets as ds dataset = ds.load_iris() k = 3 heterogeneity = [] initial_centroids = get_initial_centroids(dataset["data"], k, seed=0) centroids, cluster_assignment = kmeans( dataset["data"], k, initial_centroids, maxiter=400, record_heterogeneity=heterogeneity, verbose=True, ) plot_heterogeneity(heterogeneity, k) def ReportGenerator( df: pd.DataFrame, ClusteringVariables: np.array, FillMissingReport=None ) -> pd.DataFrame: """ Function generates easy-erading clustering report. It takes 2 arguments as an input: DataFrame - dataframe with predicted cluester column; FillMissingReport - dictionary of rules how we are going to fill missing values of for final report generate (not included in modeling); in order to run the function following libraries must be imported: import pandas as pd import numpy as np >>> data = pd.DataFrame() >>> data['numbers'] = [1, 2, 3] >>> data['col1'] = [0.5, 2.5, 4.5] >>> data['col2'] = [100, 200, 300] >>> data['col3'] = [10, 20, 30] >>> data['Cluster'] = [1, 1, 2] >>> ReportGenerator(data, ['col1', 'col2'], 0) Features Type Mark 1 2 0 # of Customers ClusterSize False 2.000000 1.000000 1 % of Customers ClusterProportion False 0.666667 0.333333 2 col1 mean_with_zeros True 1.500000 4.500000 3 col2 mean_with_zeros True 150.000000 300.000000 4 numbers mean_with_zeros False 1.500000 3.000000 .. ... ... ... ... ... 99 dummy 5% False 1.000000 1.000000 100 dummy 95% False 1.000000 1.000000 101 dummy stdev False 0.000000 NaN 102 dummy mode False 1.000000 1.000000 103 dummy median False 1.000000 1.000000 [104 rows x 5 columns] """ # Fill missing values with given rules if FillMissingReport: df.fillna(value=FillMissingReport, inplace=True) df["dummy"] = 1 numeric_cols = df.select_dtypes(np.number).columns report = ( df.groupby(["Cluster"])[ # construct report dataframe numeric_cols ] # group by cluster number .agg( [ ("sum", np.sum), ("mean_with_zeros", lambda x: np.mean(np.nan_to_num(x))), ("mean_without_zeros", lambda x: x.replace(0, np.NaN).mean()), ( "mean_25-75", lambda x: np.mean( np.nan_to_num( sorted(x)[ round((len(x) * 25 / 100)) : round(len(x) * 75 / 100) ] ) ), ), ("mean_with_na", np.mean), ("min", lambda x: x.min()), ("5%", lambda x: x.quantile(0.05)), ("25%", lambda x: x.quantile(0.25)), ("50%", lambda x: x.quantile(0.50)), ("75%", lambda x: x.quantile(0.75)), ("95%", lambda x: x.quantile(0.95)), ("max", lambda x: x.max()), ("count", lambda x: x.count()), ("stdev", lambda x: x.std()), ("mode", lambda x: x.mode()[0]), ("median", lambda x: x.median()), ("# > 0", lambda x: (x > 0).sum()), ] ) .T.reset_index() .rename(index=str, columns={"level_0": "Features", "level_1": "Type"}) ) # rename columns clustersize = report[ (report["Features"] == "dummy") & (report["Type"] == "count") ] # calculate the size of cluster(count of clientID's) clustersize.Type = ( "ClusterSize" # rename created cluster df to match report column names ) clustersize.Features = "# of Customers" clusterproportion = pd.DataFrame( clustersize.iloc[:, 2:].values / clustersize.iloc[:, 2:].values.sum() # calculating the proportion of cluster ) clusterproportion[ "Type" ] = "% of Customers" # rename created cluster df to match report column names clusterproportion["Features"] = "ClusterProportion" cols = clusterproportion.columns.tolist() cols = cols[-2:] + cols[:-2] clusterproportion = clusterproportion[cols] # rearrange columns to match report clusterproportion.columns = report.columns a = pd.DataFrame( abs( report[report["Type"] == "count"].iloc[:, 2:].values - clustersize.iloc[:, 2:].values ) ) # generating df with count of nan values a["Features"] = 0 a["Type"] = "# of nan" a.Features = report[ report["Type"] == "count" ].Features.tolist() # filling values in order to match report cols = a.columns.tolist() cols = cols[-2:] + cols[:-2] a = a[cols] # rearrange columns to match report a.columns = report.columns # rename columns to match report report = report.drop( report[report.Type == "count"].index ) # drop count values except cluster size report = pd.concat( [report, a, clustersize, clusterproportion], axis=0 ) # concat report with clustert size and nan values report["Mark"] = report["Features"].isin(ClusteringVariables) cols = report.columns.tolist() cols = cols[0:2] + cols[-1:] + cols[2:-1] report = report[cols] sorter1 = { "ClusterSize": 9, "ClusterProportion": 8, "mean_with_zeros": 7, "mean_with_na": 6, "max": 5, "50%": 4, "min": 3, "25%": 2, "75%": 1, "# of nan": 0, "# > 0": -1, "sum_with_na": -2, } report = ( report.assign( Sorter1=lambda x: x.Type.map(sorter1), Sorter2=lambda x: list(reversed(range(len(x)))), ) .sort_values(["Sorter1", "Mark", "Sorter2"], ascending=False) .drop(["Sorter1", "Sorter2"], axis=1) ) report.columns.name = "" report = report.reset_index() report.drop(columns=["index"], inplace=True) return report if __name__ == "__main__": import doctest doctest.testmod()