""" Given a array of length n, max_sub_array_sum() finds the maximum of sum of contiguous sub-array using divide and conquer method. Time complexity : O(n log n) Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION (section : 4, sub-section : 4.1, page : 70) """ def max_sum_from_start(array): """ This function finds the maximum contiguous sum of array from 0 index Parameters : array (list[int]) : given array Returns : max_sum (int) : maximum contiguous sum of array from 0 index """ array_sum = 0 max_sum = float("-inf") for num in array: array_sum += num if array_sum > max_sum: max_sum = array_sum return max_sum def max_cross_array_sum(array, left, mid, right): """ This function finds the maximum contiguous sum of left and right arrays Parameters : array, left, mid, right (list[int], int, int, int) Returns : (int) : maximum of sum of contiguous sum of left and right arrays """ max_sum_of_left = max_sum_from_start(array[left:mid+1][::-1]) max_sum_of_right = max_sum_from_start(array[mid+1: right+1]) return max_sum_of_left + max_sum_of_right def max_sub_array_sum(array, left, right): """ This function finds the maximum of sum of contiguous sub-array using divide and conquer method Parameters : array, left, right (list[int], int, int) : given array, current left index and current right index Returns : int : maximum of sum of contiguous sub-array """ # base case: array has only one element if left == right: return array[right] # Recursion mid = (left + right) // 2 left_half_sum = max_sub_array_sum(array, left, mid) right_half_sum = max_sub_array_sum(array, mid + 1, right) cross_sum = max_cross_array_sum(array, left, mid, right) return max(left_half_sum, right_half_sum, cross_sum) array = [-2, -5, 6, -2, -3, 1, 5, -6] array_length = len(array) print("Maximum sum of contiguous subarray:", max_sub_array_sum(array, 0, array_length - 1))