""" Project Euler problem 145: https://projecteuler.net/problem=145 Author: Vineet Rao, Maxim Smolskiy Problem statement: Some positive integers n have the property that the sum [ n + reverse(n) ] consists entirely of odd (decimal) digits. For instance, 36 + 63 = 99 and 409 + 904 = 1313. We will call such numbers reversible; so 36, 63, 409, and 904 are reversible. Leading zeroes are not allowed in either n or reverse(n). There are 120 reversible numbers below one-thousand. How many reversible numbers are there below one-billion (10^9)? """ EVEN_DIGITS = [0, 2, 4, 6, 8] ODD_DIGITS = [1, 3, 5, 7, 9] def slow_reversible_numbers( remaining_length: int, remainder: int, digits: list[int], length: int ) -> int: """ Count the number of reversible numbers of given length. Iterate over possible digits considering parity of current sum remainder. >>> slow_reversible_numbers(1, 0, [0], 1) 0 >>> slow_reversible_numbers(2, 0, [0] * 2, 2) 20 >>> slow_reversible_numbers(3, 0, [0] * 3, 3) 100 """ if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 result = 0 for digit in range(10): digits[length // 2] = digit result += slow_reversible_numbers( 0, (remainder + 2 * digit) // 10, digits, length ) return result result = 0 for digit1 in range(10): digits[(length + remaining_length) // 2 - 1] = digit1 if (remainder + digit1) % 2 == 0: other_parity_digits = ODD_DIGITS else: other_parity_digits = EVEN_DIGITS for digit2 in other_parity_digits: digits[(length - remaining_length) // 2] = digit2 result += slow_reversible_numbers( remaining_length - 2, (remainder + digit1 + digit2) // 10, digits, length, ) return result def slow_solution(max_power: int = 9) -> int: """ To evaluate the solution, use solution() >>> slow_solution(3) 120 >>> slow_solution(6) 18720 >>> slow_solution(7) 68720 """ result = 0 for length in range(1, max_power + 1): result += slow_reversible_numbers(length, 0, [0] * length, length) return result def reversible_numbers( remaining_length: int, remainder: int, digits: list[int], length: int ) -> int: """ Count the number of reversible numbers of given length. Iterate over possible digits considering parity of current sum remainder. >>> reversible_numbers(1, 0, [0], 1) 0 >>> reversible_numbers(2, 0, [0] * 2, 2) 20 >>> reversible_numbers(3, 0, [0] * 3, 3) 100 """ # There exist no reversible 1, 5, 9, 13 (ie. 4k+1) digit numbers if (length - 1) % 4 == 0: return 0 return slow_reversible_numbers(remaining_length, remainder, digits, length) def solution(max_power: int = 9) -> int: """ To evaluate the solution, use solution() >>> solution(3) 120 >>> solution(6) 18720 >>> solution(7) 68720 """ result = 0 for length in range(1, max_power + 1): result += reversible_numbers(length, 0, [0] * length, length) return result def benchmark() -> None: """ Benchmarks """ # Running performance benchmarks... # slow_solution : 292.9300301000003 # solution : 54.90970860000016 from timeit import timeit print("Running performance benchmarks...") print(f"slow_solution : {timeit('slow_solution()', globals=globals(), number=10)}") print(f"solution : {timeit('solution()', globals=globals(), number=10)}") if __name__ == "__main__": print(f"Solution : {solution()}") benchmark() # for i in range(1, 15): # print(f"{i}. {reversible_numbers(i, 0, [0]*i, i)}")