from collections import deque def tarjan(g: list[list[int]]) -> list[list[int]]: """ Tarjan's algo for finding strongly connected components in a directed graph Uses two main attributes of each node to track reachability, the index of that node within a component(index), and the lowest index reachable from that node(lowlink). We then perform a dfs of the each component making sure to update these parameters for each node and saving the nodes we visit on the way. If ever we find that the lowest reachable node from a current node is equal to the index of the current node then it must be the root of a strongly connected component and so we save it and it's equireachable vertices as a strongly connected component. Complexity: strong_connect() is called at most once for each node and has a complexity of O(|E|) as it is DFS. Therefore this has complexity O(|V| + |E|) for a graph G = (V, E) >>> tarjan([[2, 3, 4], [2, 3, 4], [0, 1, 3], [0, 1, 2], [1]]) [[4, 3, 1, 2, 0]] >>> tarjan([[], [], [], []]) [[0], [1], [2], [3]] >>> a = [0, 1, 2, 3, 4, 5, 4] >>> b = [1, 0, 3, 2, 5, 4, 0] >>> n = 7 >>> sorted(tarjan(create_graph(n, list(zip(a, b))))) == sorted( ... tarjan(create_graph(n, list(zip(a[::-1], b[::-1]))))) True >>> a = [0, 1, 2, 3, 4, 5, 6] >>> b = [0, 1, 2, 3, 4, 5, 6] >>> sorted(tarjan(create_graph(n, list(zip(a, b))))) [[0], [1], [2], [3], [4], [5], [6]] """ n = len(g) stack: deque[int] = deque() on_stack = [False for _ in range(n)] index_of = [-1 for _ in range(n)] lowlink_of = index_of[:] def strong_connect(v: int, index: int, components: list[list[int]]) -> int: index_of[v] = index # the number when this node is seen lowlink_of[v] = index # lowest rank node reachable from here index += 1 stack.append(v) on_stack[v] = True for w in g[v]: if index_of[w] == -1: index = strong_connect(w, index, components) lowlink_of[v] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowlink_of[v] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: component = [] w = stack.pop() on_stack[w] = False component.append(w) while w != v: w = stack.pop() on_stack[w] = False component.append(w) components.append(component) return index components: list[list[int]] = [] for v in range(n): if index_of[v] == -1: strong_connect(v, 0, components) return components def create_graph(n: int, edges: list[tuple[int, int]]) -> list[list[int]]: """ >>> n = 7 >>> source = [0, 0, 1, 2, 3, 3, 4, 4, 6] >>> target = [1, 3, 2, 0, 1, 4, 5, 6, 5] >>> edges = list(zip(source, target)) >>> create_graph(n, edges) [[1, 3], [2], [0], [1, 4], [5, 6], [], [5]] """ g: list[list[int]] = [[] for _ in range(n)] for u, v in edges: g[u].append(v) return g if __name__ == "__main__": # Test n_vertices = 7 source = [0, 0, 1, 2, 3, 3, 4, 4, 6] target = [1, 3, 2, 0, 1, 4, 5, 6, 5] edges = list(zip(source, target)) g = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)