import numpy as np import pandas as pd class RidgeRegression: def __init__(self, alpha=0.001, regularization_param=0.1, num_iterations=1000): self.alpha = alpha self.regularization_param = regularization_param self.num_iterations = num_iterations self.theta = None def feature_scaling(self, X): mean = np.mean(X, axis=0) std = np.std(X, axis=0) # avoid division by zero for constant features (std = 0) std[std == 0] = 1 # set std=1 for constant features to avoid NaN X_scaled = (X - mean) / std return X_scaled, mean, std def fit(self, X, y): X_scaled, mean, std = self.feature_scaling(X) m, n = X_scaled.shape self.theta = np.zeros(n) # initializing weights to zeros for i in range(self.num_iterations): predictions = X_scaled.dot(self.theta) error = predictions - y # computing gradient with L2 regularization gradient = (X_scaled.T.dot(error) + self.regularization_param * self.theta) / m self.theta -= self.alpha * gradient # updating weights def predict(self, X): X_scaled, _, _ = self.feature_scaling(X) return X_scaled.dot(self.theta) def compute_cost(self, X, y): X_scaled, _, _ = self.feature_scaling(X) m = len(y) predictions = X_scaled.dot(self.theta) cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (self.regularization_param / (2 * m)) * np.sum(self.theta**2) return cost def mean_absolute_error(self, y_true, y_pred): return np.mean(np.abs(y_true - y_pred)) # Example usage if __name__ == "__main__": df = pd.read_csv("ADRvsRating.csv") X = df[["Rating"]].values y = df["ADR"].values y = (y - np.mean(y)) / np.std(y) # Add bias term (intercept) to the feature matrix X = np.c_[np.ones(X.shape[0]), X] # initialize and train the Ridge Regression model model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000) model.fit(X, y) # predictions predictions = model.predict(X) # results print("Optimized Weights:", model.theta) print("Cost:", model.compute_cost(X, y)) print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))