""" Forward propagation explanation: https://towardsdatascience.com/forward-propagation-in-neural-networks-simplified-math-and-code-version-bbcfef6f9250 """ import math import random # Sigmoid def sigmoid_function(value: float, deriv: bool = False) -> float: """Return the sigmoid function of a float. >>> sigmoid_function(3.5) 0.9706877692486436 >>> sigmoid_function(3.5, True) -8.75 """ if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value)) # Initial Value INITIAL_VALUE = 0.02 def forward_propagation(expected: int, number_propagations: int) -> float: """Return the value found after the forward propagation training. >>> res = forward_propagation(32, 450_000) # Was 10_000_000 >>> res > 31 and res < 33 True >>> res = forward_propagation(32, 1000) >>> res > 31 and res < 33 False """ # Random weight weight = float(2 * (random.randint(1, 100)) - 1) for _ in range(number_propagations): # Forward propagation layer_1 = sigmoid_function(INITIAL_VALUE * weight) # How much did we miss? layer_1_error = (expected / 100) - layer_1 # Error delta layer_1_delta = layer_1_error * sigmoid_function(layer_1, True) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_1 * 100 if __name__ == "__main__": import doctest doctest.testmod() expected = int(input("Expected value: ")) number_propagations = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))