from numpy.polynomial import Polynomial from math import factorial import pytest def legendre(n: int) -> list[float]: """ Compute the coefficients of the nth Legendre polynomial. The Legendre polynomials are solutions to Legendre's differential equation and are widely used in physics and engineering. Parameters: n (int): The order of the Legendre polynomial. Returns: list[float]: Coefficients of the polynomial in ascending order of powers. """ p = (1 / (factorial(n) * (2**n))) * (Polynomial([-1, 0, 1]) ** n) return p.deriv(n).coef.tolist() def jsp(): print(legendre(1)) print(legendre(2)) print(legendre(3)) print(legendre(4)) jsp() def test_legendre_0(): """Test the 0th Legendre polynomial.""" assert legendre(0) == [1.0], "The 0th Legendre polynomial should be [1.0]" def test_legendre_1(): """Test the 1st Legendre polynomial.""" assert legendre(1) == [0.0, 1.0], "The 1st Legendre polynomial should be [0.0, 1.0]" def test_legendre_2(): """Test the 2nd Legendre polynomial.""" assert legendre(2) == [ -0.5, 0.0, 1.5, ], "The 2nd Legendre polynomial should be [-0.5, 0.0, 1.5]" def test_legendre_3(): """Test the 3rd Legendre polynomial.""" assert legendre(3) == [ 0.0, -1.5, 0.0, 2.5, ], "The 3rd Legendre polynomial should be [0.0, -1.5, 0.0, 2.5]" def test_legendre_4(): """Test the 4th Legendre polynomial.""" assert legendre(4) == pytest.approx([0.375, 0.0, -3.75, 0.0, 4.375]) "The 4th Legendre polynomial should be [0.375, 0.0, -3.75, 0.0, 4.375]" if __name__ == "__main__": pytest.main()