from math import ceil, sqrt from __future__ import annotations def primeproduct(n: int, x: list = []): """ >>> primeproduct(868) [2, 2, 7, 31] >>> primeproduct(9039423423423743) [2, 2, 7, 31, 719, 12572216166097] >>> primeproduct(0.02) [] """ if n < 1: return [] if n > 1: if len(x) >= 1 and x[-1] % n == 0: # check in already factorised x.append(x[-1]) n = n // x[-1] else: sq = ceil(sqrt(n)) flag = 0 if x != []: for i in range(x[-1], sq + 1, 2): if n % i == 0: n = n // i x.append(i) flag = 1 break else: # Handle factor 2 separately while n % 2 == 0: # only 2 is even prime n = n // 2 x.append(2) # Start loop from 3 and increment by 2 for i in range(3, sq + 1, 2): # skip even numbers if n % i == 0: n = n // i x.append(i) flag = 1 break if not flag: x.append(n) n = 1 return primeproduct(n, x) return x # faster than https://github.com/sourabhkv/Python/blob/master/maths/prime_factors.py approx 2x if __name__ == "__main__": import doctest doctest.testmod()