import matplotlib.pyplot as plt import numpy as np def weighted_matrix( point: np.array, training_data_x: np.array, bandwidth: float ) -> np.array: """ Calculate the weight for every point in the data set. point --> the x value at which we want to make predictions >>> weighted_matrix( ... np.array([1., 1.]), ... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]), ... 0.6 ... ) array([[1.43807972e-207, 0.00000000e+000, 0.00000000e+000], [0.00000000e+000, 0.00000000e+000, 0.00000000e+000], [0.00000000e+000, 0.00000000e+000, 0.00000000e+000]]) """ m, _ = np.shape(training_data_x) # m is the number of training samples weights = np.eye(m) # Initializing weights as identity matrix # calculating weights for all training examples [x(i)'s] for j in range(m): diff = point - training_data_x[j] weights[j, j] = np.exp(diff @ diff.T / (-2.0 * bandwidth**2)) return weights def local_weight( point: np.array, training_data_x: np.array, training_data_y: np.array, bandwidth: float, ) -> np.array: """ Calculate the local weights using the weight_matrix function on training data. Return the weighted matrix. >>> local_weight( ... np.array([1., 1.]), ... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]), ... np.array([[1.01, 1.66, 3.5]]), ... 0.6 ... ) array([[0.00873174], [0.08272556]]) """ weight = weighted_matrix(point, training_data_x, bandwidth) w = np.linalg.inv(training_data_x.T @ (weight @ training_data_x)) @ ( training_data_x.T @ weight @ training_data_y.T ) return w def local_weight_regression( training_data_x: np.array, training_data_y: np.array, bandwidth: float ) -> np.array: """ Calculate predictions for each data point on axis >>> local_weight_regression( ... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]), ... np.array([[1.01, 1.66, 3.5]]), ... 0.6 ... ) array([1.07173261, 1.65970737, 3.50160179]) """ m, _ = np.shape(training_data_x) ypred = np.zeros(m) for i, item in enumerate(training_data_x): ypred[i] = item @ local_weight( item, training_data_x, training_data_y, bandwidth ) return ypred def load_data( dataset_name: str, cola_name: str, colb_name: str ) -> tuple[np.array, np.array, np.array, np.array]: """ Load data from seaborn and split it into x and y points """ import seaborn as sns data = sns.load_dataset(dataset_name) col_a = np.array(data[cola_name]) # total_bill col_b = np.array(data[colb_name]) # tip mcol_a = col_a.copy() mcol_b = col_b.copy() one = np.ones(np.shape(mcol_b)[0], dtype=int) # pairing elements of one and mcol_a training_data_x = np.column_stack((one, mcol_a)) return training_data_x, mcol_b, col_a, col_b def get_preds(training_data_x: np.array, mcol_b: np.array, tau: float) -> np.array: """ Get predictions with minimum error for each training data >>> get_preds( ... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]), ... np.array([[1.01, 1.66, 3.5]]), ... 0.6 ... ) array([1.07173261, 1.65970737, 3.50160179]) """ ypred = local_weight_regression(training_data_x, mcol_b, tau) return ypred def plot_preds( training_data_x: np.array, predictions: np.array, col_x: np.array, col_y: np.array, cola_name: str, colb_name: str, ) -> plt.plot: """ Plot predictions and display the graph """ xsort = training_data_x.copy() xsort.sort(axis=0) plt.scatter(col_x, col_y, color="blue") plt.plot( xsort[:, 1], predictions[training_data_x[:, 1].argsort(0)], color="yellow", linewidth=5, ) plt.title("Local Weighted Regression") plt.xlabel(cola_name) plt.ylabel(colb_name) plt.show() if __name__ == "__main__": import doctest doctest.testmod() training_data_x, mcol_b, col_a, col_b = load_data("tips", "total_bill", "tip") predictions = get_preds(training_data_x, mcol_b, 0.5) plot_preds(training_data_x, predictions, col_a, col_b, "total_bill", "tip")