import numpy as np """ Here I implemented the scoring functions. MAE, MSE, RMSE, RMSLE are included. Those are used for calculating differences between predicted values and actual values. Metrics are slightly differentiated. Sometimes squared, rooted, even log is used. Using log and roots can be perceived as tools for penalizing big erors. However, using appropriate metrics depends on the situations, and types of data """ #Mean Absolute Error def mae(predict, actual): predict = np.array(predict) actual = np.array(actual) difference = abs(predict - actual) score = difference.mean() return score #Mean Squared Error def mse(predict, actual): predict = np.array(predict) actual = np.array(actual) difference = predict - actual square_diff = np.square(difference) score = square_diff.mean() return score #Root Mean Squared Error def rmse(predict, actual): predict = np.array(predict) actual = np.array(actual) difference = predict - actual square_diff = np.square(difference) mean_square_diff = square_diff.mean() score = np.sqrt(mean_square_diff) return score #Root Mean Square Logarithmic Error def rmsle(predict, actual): predict = np.array(predict) actual = np.array(actual) log_predict = np.log(predict+1) log_actual = np.log(actual+1) difference = log_predict - log_actual square_diff = np.square(difference) mean_square_diff = square_diff.mean() score = np.sqrt(mean_square_diff) return score #Mean Bias Deviation def mbd(predict, actual): predict = np.array(predict) actual = np.array(actual) difference = predict - actual numerator = np.sum(difference) / len(predict) denumerator = np.sum(actual) / len(predict) print str(numerator) print str(denumerator) score = float(numerator) / denumerator * 100 return score