# Eulerian Path is a path in graph that visits every edge exactly once. # Eulerian Circuit is an Eulerian Path which starts and ends on the same # vertex. # time complexity is O(V+E) # space complexity is O(VE) # using dfs for finding eulerian path traversal def dfs(u, graph, visited_edge, path=None): path = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: visited_edge[u][v], visited_edge[v][u] = True, True path = dfs(v, graph, visited_edge, path) return path # for checking in graph has euler path or circuit def check_circuit_or_path(graph, max_node): odd_degree_nodes = 0 odd_node = -1 for i in range(max_node): if i not in graph: continue if len(graph[i]) % 2 == 1: odd_degree_nodes += 1 odd_node = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def check_euler(graph, max_node): visited_edge = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)] check, odd_node = check_circuit_or_path(graph, max_node) if check == 3: print("graph is not Eulerian") print("no path") return start_node = 1 if check == 2: start_node = odd_node print("graph has a Euler path") if check == 1: print("graph has a Euler cycle") path = dfs(start_node, graph, visited_edge) print(path) def main(): g1 = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} g2 = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} g3 = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} g4 = {1: [2, 3], 2: [1, 3], 3: [1, 2]} g5 = { 1: [], 2: [], # all degree is zero } max_node = 10 check_euler(g1, max_node) check_euler(g2, max_node) check_euler(g3, max_node) check_euler(g4, max_node) check_euler(g5, max_node) if __name__ == "__main__": main()