import numpy as np import pandas as pd class RidgeRegression: def __init__( self, alpha: float = 0.001, regularization_param: float = 0.1, num_iterations: int = 1000, ) -> None: self.alpha: float = alpha self.regularization_param: float = regularization_param self.num_iterations: int = num_iterations self.theta: np.ndarray = None def feature_scaling( self, features: np.ndarray ) -> tuple[np.ndarray, np.ndarray, np.ndarray]: mean = np.mean(features, axis=0) std = np.std(features, axis=0) # avoid division by zero for constant features (std = 0) std[std == 0] = 1 # set std=1 for constant features to avoid NaN features_scaled = (features - mean) / std return features_scaled, mean, std def fit(self, features: np.ndarray, target: np.ndarray) -> None: features_scaled, mean, std = self.feature_scaling(features) m, n = features_scaled.shape self.theta = np.zeros(n) # initializing weights to zeros for _ in range(self.num_iterations): predictions = features_scaled.dot(self.theta) error = predictions - target # computing gradient with L2 regularization gradient = ( features_scaled.T.dot(error) + self.regularization_param * self.theta ) / m self.theta -= self.alpha * gradient # updating weights def predict(self, features: np.ndarray) -> np.ndarray: features_scaled, _, _ = self.feature_scaling(features) return features_scaled.dot(self.theta) def compute_cost(self, features: np.ndarray, target: np.ndarray) -> float: features_scaled, _, _ = self.feature_scaling(features) m = len(target) predictions = features_scaled.dot(self.theta) cost = (1 / (2 * m)) * np.sum((predictions - target) ** 2) + ( self.regularization_param / (2 * m) ) * np.sum(self.theta**2) return cost def mean_absolute_error(self, target: np.ndarray, predictions: np.ndarray) -> float: return np.mean(np.abs(target - predictions)) # Example usage if __name__ == "__main__": data = pd.read_csv("ADRvsRating.csv") features_matrix = data[["Rating"]].to_numpy() target = data["ADR"].to_numpy() target = (target - np.mean(target)) / np.std(target) # added bias term to the feature matrix x = np.c_[np.ones(features_matrix.shape[0]), features_matrix] # initialize and train the ridge regression model model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000) model.fit(features_matrix, target) # predictions predictions = model.predict(features_matrix) # results print("Optimized Weights:", model.theta) print("Cost:", model.compute_cost(features_matrix, target)) print("Mean Absolute Error:", model.mean_absolute_error(target, predictions))