import math """ These two functions will return the radii of capture for a target object of mass M and radius R as well as it's effective cross sectional area σ(sigma). That is to say any projectile with velocity v passing within σ, will be caputered by the target object with mass M. The derivation of which is given at the bottom of this file. The derivation shows that a projectile does not need to aim directly at the target body in order to hit it, as R_capture>R_target. Astronomers refer to the effective cross section for capture as σ=π*R_capture**2. This algorithm does not account for an N-body problem. """ def capture_radii( target_body_radius: float, target_body_mass: float, projectile_velocity: float ) -> float: # Gravitational constant to four significant figures as of 7/8/2023| # Source google: gravitational constant g = 6.6743e-11 # SI units (N*m**2)/kg**2 #Gravitational constant to four significant figures as of 7/8/2023| #Source google: gravitational constant g=6.6743e-11 #SI units (N*m**2)/kg**2 escape_velocity_squared = (2 * g * target_body_mass) / target_body_radius capture_radius = target_body_radius * math.sqrt( 1 + escape_velocity_squared / math.pow(projectile_velocity, 2) ) return capture_radius def capture_area(capture_radius: float) -> float: sigma = math.pi * math.pow(capture_radius, 2) return sigma """ Derivation: Let: Mt=target mass, Rt=target radius, v=projectile_velocity, r_0=radius of projectile at instant 0 to CM of target v_p=v at closest approach, r_p=radius from projectile to target CM at closest approach, R_capture= radius of impact for projectile with velocity v (1)At time=0 the projectile's energy falling from infinity| E=K+U=0.5*m*(v**2)+0 E_initial=0.5*m*(v**2) (2)at time=0 the angular momentum of the projectile relative to CM target| L_initial=m*r_0*v*sin(Θ)->m*r_0*v*(R_capture/r_0)->m*v*R_capture L_i=m*v*R_capture (3)The energy of the projectile at closest approach will be its kinetic energy at closest approach plus gravitational potential energy(-(GMm)/R)| E_p=K_p+U_p->E_p=0.5*m*(v_p**2)-(G*Mt*m)/r_p E_p=0.0.5*m*(v_p**2)-(G*Mt*m)/r_p (4)The angular momentum of the projectile relative to the target at closest approach will be L_p=m*r_p*v_p*sin(Θ), however relative to the target Θ=90° sin(90°)=1| L_p=m*r_p*v_p (5)Using conservation of angular momentum and energy, we can write a quadratic equation that solves for r_p| (a) Ei=Ep-> 0.5*m*(v**2)=0.5*m*(v_p**2)-(G*Mt*m)/r_p-> v**2=v_p**2-(2*G*Mt)/r_p (b) Li=Lp-> m*v*R_capture=m*r_p*v_p-> v*R_capture=r_p*v_p-> v_p=(v*R_capture)/r_p (c) b plugs int a| v**2=((v*R_capture)/r_p)**2-(2*G*Mt)/r_p-> v**2-(v**2)*(R_c**2)/(r_p**2)+(2*G*Mt)/r_p=0-> (v**2)*(r_p**2)+2*G*Mt*r_p-(v**2)*(R_c**2)=0 (d) Using the quadratic formula, we'll solve for r_p then rearrange to solve to R_capture r_p=(-2*G*Mt ± sqrt(4*G^2*Mt^2+ 4(v^4*R_c^2)))/(2*v^2)-> r_p=(-G*Mt ± sqrt(G^2*Mt+v^4*R_c^2))/v^2-> r_p<0 is something we can ignore, as it has no physical meaning for our purposes.-> r_p=(-G*Mt)/v^2 + sqrt(G^2*Mt^2/v^4 + R_c^2) (e)We are trying to solve for R_c. We are looking for capture, so we want r_p=Rt Rt + G*Mt/v^2 = sqrt(G^2*Mt^2/v^4 + R_c^2)-> (Rt + G*Mt/v^2)^2 = G^2*Mt^2/v^4 + R_c^2-> Rt^2 + 2*G*Mt*Rt/v^2 + G^2*Mt^2/v^4 = G^2*Mt^2/v^4 + R_c^2-> Rt**2 + 2*G*Mt*Rt/v**2 = R_c**2-> Rt**2 * (1 + 2*G*Mt/Rt *1/v**2) = R_c**2-> escape velocity = sqrt(2GM/R)= v_escape**2=2GM/R-> Rt**2 * (1 + v_esc**2/v**2) = R_c**2-> (6) R_capture = Rt * sqrt(1 + v_esc**2/v**2) Source: Problem Set 3 #8 c.Fall_2017|Honors Astronomy|Professor Rachel Bezanson Source #2: http://www.nssc.ac.cn/wxzygx/weixin/201607/P020160718380095698873.pdf 8.8 Planetary Rendezvous: Pg.368 """