"""Newton's Method.""" # Newton's Method - https://en.wikipedia.org/wiki/Newton%27s_method from typing import Callable RealFunc = Callable[[float], float] # type alias for a real -> real function # function is the f(x) and derivative is the f'(x) def newton(function: RealFunc, derivative: RealFunc, starting_int: int,) -> float: """ >>> newton(lambda x: x ** 3 - 2 * x - 5, lambda x: 3 * x ** 2 - 2, 3) 2.0945514815423474 >>> newton(lambda x: x ** 3 - 1, lambda x: 3 * x ** 2, -2) 1.0 >>> newton(lambda x: x ** 3 - 1, lambda x: 3 * x ** 2, -4) 1.0000000000000102 >>> import math >>> newton(math.sin, math.cos, 1) 0.0 >>> newton(math.sin, math.cos, 2) 3.141592653589793 >>> newton(math.cos, lambda x: -math.sin(x), 2) 1.5707963267948966 >>> newton(math.cos, lambda x: -math.sin(x), 0) Traceback (most recent call last): ... ZeroDivisionError: Could not find root """ prev_guess = float(starting_int) while True: try: next_guess = prev_guess - function(prev_guess) / derivative(prev_guess) except ZeroDivisionError: raise ZeroDivisionError("Could not find root") if abs(prev_guess - next_guess) < 10 ** -5: return next_guess prev_guess = next_guess def f(x: float) -> float: return (x ** 3) - (2 * x) - 5 def f1(x: float) -> float: return 3 * (x ** 2) - 2 if __name__ == "__main__": print(newton(f, f1, 3))