"""Multiple image resizing techniques""" import numpy as np import cv2 from cv2 import destroyAllWindows, imread, imshow, waitKey class NearestNeighbour: """ Simplest and fastest version of image resizing. Source: https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation """ def __init__(self, img, dst_width: int, dst_height: int): if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0") self.img = img self.src_w = img.shape[1] self.src_h = img.shape[0] self.dst_w = dst_width self.dst_h = dst_height self.ratio_x = self.src_w / self.dst_w self.ratio_y = self.src_h / self.dst_h self.output = self.output_img = ( np.ones((self.dst_h, self.dst_w, 3), np.uint8) * 255 ) def process(self): for i in range(self.dst_h): for j in range(self.dst_w): self.output[i][j] = self.img[self.get_y(i)][self.get_x(j)] def get_x(self, x: int) -> int: """ Get parent X coordinate for destination X :param x: Destination X coordinate :return: Parent X coordinate based on `x ratio` >>> nn = NearestNeighbour(imread("digital_image_processing/image_data/lena.jpg", ... 1), 100, 100) >>> nn.ratio_x = 0.5 >>> nn.get_x(4) 2 """ return int(self.ratio_x * x) def get_y(self, y: int) -> int: """ Get parent Y coordinate for destination Y :param y: Destination X coordinate :return: Parent X coordinate based on `y ratio` >>> nn = NearestNeighbour(imread("digital_image_processing/image_data/lena.jpg", ... 1), 100, 100) >>> nn.ratio_y = 0.5 >>> nn.get_y(4) 2 """ return int(self.ratio_y * y) class BilinearInterpolation: """ Bilinear interpolation for image resizing. Source: https://en.wikipedia.org/wiki/Bilinear_interpolation """ def __init__(self, img, dst_width: int, dst_height: int): if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0") self.img = img self.src_w = img.shape[1] self.src_h = img.shape[0] self.dst_w = dst_width self.dst_h = dst_height self.ratio_x = self.src_w / self.dst_w self.ratio_y = self.src_h / self.dst_h self.output = np.ones((self.dst_h, self.dst_w, 3), np.uint8) * 255 def process(self): for i in range(self.dst_h): for j in range(self.dst_w): x = self.ratio_x * j y = self.ratio_y * i x1, y1 = int(x), int(y) x2, y2 = min(x1 + 1, self.src_w - 1), min(y1 + 1, self.src_h - 1) a = x - x1 b = y - y1 top = (1 - a) * self.img[y1][x1] + a * self.img[y1][x2] bottom = (1 - a) * self.img[y2][x1] + a * self.img[y2][x2] self.output[i][j] = (1 - b) * top + b * bottom class BicubicInterpolation: """ Bicubic interpolation for image resizing. Source: https://en.wikipedia.org/wiki/Bicubic_interpolation """ def __init__(self, img, dst_width: int, dst_height: int): if dst_width < 0 or dst_height < 0: raise ValueError("Destination width/height should be > 0") self.img = img self.src_w = img.shape[1] self.src_h = img.shape[0] self.dst_w = dst_width self.dst_h = dst_height self.ratio_x = self.src_w / self.dst_w self.ratio_y = self.src_h / self.dst_h self.output = np.ones((self.dst_h, self.dst_w, 3), np.uint8) * 255 def cubic(self, x): abs_x = abs(x) if abs_x <= 1: return 1.5 * abs_x**3 - 2.5 * abs_x**2 + 1 elif abs_x < 2: return -0.5 * abs_x**3 + 2.5 * abs_x**2 - 4 * abs_x + 2 else: return 0 def interpolate(self, x, y, channel): x1 = int(x) y1 = int(y) total = 0.0 for m in range(-1, 3): for n in range(-1, 3): xm = min(max(x1 + m, 0), self.src_w - 1) yn = min(max(y1 + n, 0), self.src_h - 1) weight = self.cubic(m - (x - x1)) * self.cubic(n - (y - y1)) total += self.img[yn, xm, channel] * weight return np.clip(total, 0, 255) def process(self): for i in range(self.dst_h): for j in range(self.dst_w): x = self.ratio_x * j y = self.ratio_y * i for c in range(3): # For each color channel (R, G, B) self.output[i, j, c] = self.interpolate(x, y, c) if __name__ == "__main__": dst_w, dst_h = 800, 600 im = imread("image_data/lena.jpg", 1) # Nearest Neighbour nn = NearestNeighbour(im, dst_w, dst_h) nn.process() imshow(f"Nearest Neighbor: {dst_w}x{dst_h}", nn.output) waitKey(0) # Bilinear Interpolation bi = BilinearInterpolation(im, dst_w, dst_h) bi.process() imshow(f"Bilinear Interpolation: {dst_w}x{dst_h}", bi.output) waitKey(0) # Bicubic Interpolation bc = BicubicInterpolation(im, dst_w, dst_h) bc.process() imshow(f"Bicubic Interpolation: {dst_w}x{dst_h}", bc.output) waitKey(0) destroyAllWindows()