""" This is pure Python implementation of interpolation search algorithm """ def interpolation_search(sorted_collection, item): """Pure implementation of interpolation search algorithm in Python Be careful collection must be ascending sorted, otherwise result will be unpredictable :param sorted_collection: some ascending sorted collection with comparable items :param item: item value to search :return: index of found item or None if item is not found """ left = 0 right = len(sorted_collection) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None point = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(sorted_collection): return None current_item = sorted_collection[point] if current_item == item: return point elif point < left: right = left left = point elif point > right: left = right right = point elif item < current_item: right = point - 1 else: left = point + 1 return None def interpolation_search_by_recursion(sorted_collection, item, left, right): """Pure implementation of interpolation search algorithm in Python by recursion Be careful collection must be ascending sorted, otherwise result will be unpredictable First recursion should be started with left=0 and right=(len(sorted_collection)-1) :param sorted_collection: some ascending sorted collection with comparable items :param item: item value to search :return: index of found item or None if item is not found """ # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None point = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(sorted_collection): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(sorted_collection, item, point, left) elif point > right: return interpolation_search_by_recursion(sorted_collection, item, right, left) elif sorted_collection[point] > item: return interpolation_search_by_recursion( sorted_collection, item, left, point - 1 ) else: return interpolation_search_by_recursion( sorted_collection, item, point + 1, right ) def __assert_sorted(collection): """Check if collection is ascending sorted, if not - raises :py:class:`ValueError` :param collection: collection :return: True if collection is ascending sorted :raise: :py:class:`ValueError` if collection is not ascending sorted Examples: >>> __assert_sorted([0, 1, 2, 4]) True >>> __assert_sorted([10, -1, 5]) Traceback (most recent call last): ... ValueError: Collection must be ascending sorted """ if collection != sorted(collection): raise ValueError("Collection must be ascending sorted") return True if __name__ == "__main__": import sys """ user_input = input('Enter numbers separated by comma:\n').strip() collection = [int(item) for item in user_input.split(',')] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') target_input = input('Enter a single number to be found in the list:\n') target = int(target_input) """ debug = 0 if debug == 1: collection = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") target = 67 result = interpolation_search(collection, target) if result is not None: print(f"{target} found at positions: {result}") else: print("Not found")