""" Implements the Exponential Linear Unit or ELU function. The function takes a vector of K real numbers and a real number alpha as input and then applies the ELU function to each element of the vector. Script inspired from its corresponding Wikipedia article https://en.wikipedia.org/wiki/Rectifier_(neural_networks) """ import numpy as np def exponential_linear_unit(vector: np.ndarray, alpha: float) -> np.ndarray: """ Implements the ELU activation function. Parameters: vector: the array containing input of elu activation alpha: hyper-parameter return: elu (np.array): The input numpy array after applying elu. Mathematically, f(x) = x, x>0 else (alpha * (e^x -1)), x<=0, alpha >=0 Examples: >>> exponential_linear_unit(vector=np.array([2.3,0.6,-2,-3.8,9]), alpha=0.3) array([ 2.3 , 0.6 , -0.25939942, -0.29328877, 9. ]) >>> exponential_linear_unit(vector=np.array([-9.2,-0.3,-2.45,0.45]), alpha=0.067) array([-0.06699323, -0.01736518, -0.06121833, 0.45 ]) """ return np.where(vector > 0, vector, (alpha * (np.exp(vector) - 1))) if __name__ == "__main__": import doctest doctest.testmod()