import cv2 import numpy as np from digital_image_processing.filters.convolve import img_convolve from digital_image_processing.filters.sobel_filter import sobel_filter PI = 180 def gen_gaussian_kernel(k_size, sigma): center = k_size // 2 x, y = np.mgrid[0 - center : k_size - center, 0 - center : k_size - center] g = ( 1 / (2 * np.pi * sigma) * np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma))) ) return g def suppress_non_maximum(image_shape, gradient_direction, sobel_grad): """ Non-maximum suppression. If the edge strength of the current pixel is the largest compared to the other pixels in the mask with the same direction, the value will be preserved. Otherwise, the value will be suppressed. """ destination = np.zeros(image_shape) for row in range(1, image_shape[0] - 1): for col in range(1, image_shape[1] - 1): direction = gradient_direction[row, col] if ( 0 <= direction < PI / 8 or 15 * PI / 8 <= direction <= 2 * PI or 7 * PI / 8 <= direction <= 9 * PI / 8 ): w = sobel_grad[row, col - 1] e = sobel_grad[row, col + 1] if sobel_grad[row, col] >= w and sobel_grad[row, col] >= e: destination[row, col] = sobel_grad[row, col] elif ( PI / 8 <= direction < 3 * PI / 8 or 9 * PI / 8 <= direction < 11 * PI / 8 ): sw = sobel_grad[row + 1, col - 1] ne = sobel_grad[row - 1, col + 1] if sobel_grad[row, col] >= sw and sobel_grad[row, col] >= ne: destination[row, col] = sobel_grad[row, col] elif ( 3 * PI / 8 <= direction < 5 * PI / 8 or 11 * PI / 8 <= direction < 13 * PI / 8 ): n = sobel_grad[row - 1, col] s = sobel_grad[row + 1, col] if sobel_grad[row, col] >= n and sobel_grad[row, col] >= s: destination[row, col] = sobel_grad[row, col] elif ( 5 * PI / 8 <= direction < 7 * PI / 8 or 13 * PI / 8 <= direction < 15 * PI / 8 ): nw = sobel_grad[row - 1, col - 1] se = sobel_grad[row + 1, col + 1] if sobel_grad[row, col] >= nw and sobel_grad[row, col] >= se: destination[row, col] = sobel_grad[row, col] return destination def detect_high_low_threshold( image_shape, destination, threshold_low, threshold_high, weak, strong ): """ High-Low threshold detection. If an edge pixel's gradient value is higher than the high threshold value, it is marked as a strong edge pixel. If an edge pixel's gradient value is smaller than the high threshold value and larger than the low threshold value, it is marked as a weak edge pixel. If an edge pixel's value is smaller than the low threshold value, it will be suppressed. """ for row in range(1, image_shape[0] - 1): for col in range(1, image_shape[1] - 1): if destination[row, col] >= threshold_high: destination[row, col] = strong elif destination[row, col] <= threshold_low: destination[row, col] = 0 else: destination[row, col] = weak def track_edge(image_shape, destination, weak, strong): """ Edge tracking. Usually a weak edge pixel caused from true edges will be connected to a strong edge pixel while noise responses are unconnected. As long as there is one strong edge pixel that is involved in its 8-connected neighborhood, that weak edge point can be identified as one that should be preserved. """ for row in range(1, image_shape[0]): for col in range(1, image_shape[1]): if destination[row, col] == weak: if 255 in ( destination[row, col + 1], destination[row, col - 1], destination[row - 1, col], destination[row + 1, col], destination[row - 1, col - 1], destination[row + 1, col - 1], destination[row - 1, col + 1], destination[row + 1, col + 1], ): destination[row, col] = strong else: destination[row, col] = 0 def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255): # gaussian_filter gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4)) # get the gradient and degree by sobel_filter sobel_grad, sobel_theta = sobel_filter(gaussian_out) gradient_direction = PI + np.rad2deg(sobel_theta) destination = suppress_non_maximum(image.shape, gradient_direction, sobel_grad) detect_high_low_threshold( image.shape, destination, threshold_low, threshold_high, weak, strong ) track_edge(image.shape, destination, weak, strong) return destination if __name__ == "__main__": # read original image in gray mode lena = cv2.imread(r"../image_data/lena.jpg", 0) # canny edge detection canny_destination = canny(lena) cv2.imshow("canny", canny_destination) cv2.waitKey(0)