"""Created by Nathan Damon, @bizzfitch on github >>> test_miller_rabin() """ def miller_rabin(n, allow_probable=False): """Deterministic Miller-Rabin algorithm for primes ~< 3.32e24. Uses numerical analysis results to return whether or not the passed number is prime. If the passed number is above the upper limit, and allow_probable is True, then a return value of True indicates that n is probably prime. This test does not allow False negatives- a return value of False is ALWAYS composite. Parameters ---------- n : int The integer to be tested. Since we usually care if a number is prime, n < 2 returns False instead of raising a ValueError. allow_probable: bool, default False Whether or not to test n above the upper bound of the deterministic test. Raises ------ ValueError Reference --------- https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test """ if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis bounds = [2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981] primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(bounds, 1): if n < _p: # then we have our last prime to check plist = primes[:idx] break d, s = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: pr = False for r in range(s): m = pow(prime, d * 2 ** r, n) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): pr = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def test_miller_rabin(): """Testing a nontrivial (ends in 1, 3, 7, 9) composite and a prime in each range. """ assert not miller_rabin(561) assert miller_rabin(563) # 2047 assert not miller_rabin(838_201) assert miller_rabin(838_207) # 1_373_653 assert not miller_rabin(17_316_001) assert miller_rabin(17_316_017) # 25_326_001 assert not miller_rabin(3_078_386_641) assert miller_rabin(3_078_386_653) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801) assert miller_rabin(1_713_045_574_819) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307) assert miller_rabin(2_779_799_728_327) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441) assert miller_rabin(113_850_023_909_527) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351) assert miller_rabin(1_275_041_018_848_804_391) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867) assert miller_rabin(79_666_464_458_507_787_791_951) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333) assert miller_rabin(552_840_677_446_647_897_660_359) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == '__main__': test_miller_rabin()