''' Author : Gowtham Kamalasekar LinkedIn : https://www.linkedin.com/in/gowtham-kamalasekar/ ''' class DbScan: import math import matplotlib.pyplot as plt import pandas as pd from typing import dict, list ''' DBSCAN Algorithm : Density-Based Spatial Clustering Of Applications With Noise Refer this website for more details : https://en.wikipedia.org/wiki/DBSCAN Functions: ---------- __init__() : Constructor that sets minPts, radius and file perform_dbscan() : Invoked by constructor and calculates the core and noise points and returns a dictionary. print_dbscan() : Prints the core and noise points along with stating if the noise are border points or not. plot_dbscan() : Plots the points to show the core and noise point. To create a object ------------------ import dbscan obj = dbscan.DbScan(minpts, radius, file) obj.print_dbscan() obj.plot_dbscan() ''' def __init__(self, minpts : int, radius : int, file : str = ({'x': 3, 'y': 7}, {'x': 4, 'y': 6}, {'x': 5, 'y': 5}, {'x': 6, 'y': 4},{'x': 7, 'y': 3}, {'x': 6, 'y': 2}, {'x': 7, 'y': 2}, {'x': 8, 'y': 4},{'x': 3, 'y': 3}, {'x': 2, 'y': 6}, {'x': 3, 'y': 5}, {'x': 2, 'y': 4}) ) -> None: ''' Constructor Args: ----------- minpts (int) : Minimum number of points needed to be within the radius to considered as core radius (int) : The radius from a given core point where other core points can be considered as core file (csv) : CSV file location. Should contain x and y coordinate value for each point. Example : minPts = 4 radius = 1.9 file = 'data_dbscan.csv' File Structure of CSV Data: --------------------------- _____ x | y ----- 3 | 7 4 | 6 5 | 5 6 | 4 7 | 3 ----- ''' self.minpts = minpts self.radius = radius self.file = file self.dict1 = self.perform_dbscan() def perform_dbscan(self) -> dict[int, list[int]]: ''' Args: ----------- None Return: -------- Dictionary with points and the list of points that lie in its radius >>> result = DbScan(4, 1.9).perform_dbscan() >>> for key in sorted(result): ... print(key, sorted(result[key])) 1 [1, 2, 10] 2 [1, 2, 3, 11] 3 [2, 3, 4] 4 [3, 4, 5] 5 [4, 5, 6, 7, 8] 6 [5, 6, 7] 7 [5, 6, 7] 8 [5, 8] 9 [9, 12] 10 [1, 10, 11] 11 [2, 10, 11, 12] 12 [9, 11, 12] ''' if type(self.file) is str: data = pd.read_csv(self.file) else: data = pd.DataFrame(list(self.file)) e = self.radius dict1 = {} for i in range(len(data)): for j in range(len(data)): dist = math.sqrt(pow(data['x'][j] - data['x'][i],2) + pow(data['y'][j] - data['y'][i],2)) if dist < e: if i+1 in dict1: dict1[i+1].append(j+1) else: dict1[i+1] = [j+1,] return dict1 def print_dbscan(self) -> None: ''' Outputs: -------- Prints each point and if it is a core or a noise (w/ border) >>> DbScan(4,1.9).print_dbscan() 1 [1, 2, 10] ---> Noise ---> Border 2 [1, 2, 3, 11] ---> Core 3 [2, 3, 4] ---> Noise ---> Border 4 [3, 4, 5] ---> Noise ---> Border 5 [4, 5, 6, 7, 8] ---> Core 6 [5, 6, 7] ---> Noise ---> Border 7 [5, 6, 7] ---> Noise ---> Border 8 [5, 8] ---> Noise ---> Border 9 [9, 12] ---> Noise 10 [1, 10, 11] ---> Noise ---> Border 11 [2, 10, 11, 12] ---> Core 12 [9, 11, 12] ---> Noise ---> Border ''' for i in self.dict1: print(i," ",self.dict1[i], end=' ---> ') if len(self.dict1[i]) >= self.minpts: print("Core") else: for j in self.dict1: if ( i != j and len(self.dict1[j]) >= self.minpts and i in self.dict1[j] ): print("Noise ---> Border") break else: print("Noise") def plot_dbscan(self) -> None: ''' Output: ------- A matplotlib plot that show points as core and noise along with the circle that lie within it. >>> DbScan(4,1.9).plot_dbscan() Plotted Successfully ''' if type(self.file) is str: data = pd.read_csv(self.file) else: data = pd.DataFrame(list(self.file)) e = self.radius for i in self.dict1: if len(self.dict1[i]) >= self.minpts: plt.scatter(data['x'][i-1], data['y'][i-1], color='red') circle = plt.Circle((data['x'][i-1], data['y'][i-1]), e, color='blue', fill=False) plt.gca().add_artist(circle) plt.text(data['x'][i-1], data['y'][i-1], 'P'+str(i), ha='center', va='bottom') else: plt.scatter(data['x'][i-1], data['y'][i-1], color='green') plt.text(data['x'][i-1], data['y'][i-1], 'P'+str(i), ha='center', va='bottom') plt.xlabel('X') plt.ylabel('Y') plt.title('DBSCAN Clustering') plt.legend(['Core','Noise']) plt.show() print("Plotted Successfully") if __name__ == "__main__": import doctest doctest.testmod()