from pathlib import Path import numpy as np from PIL import Image def rgb_to_gray(rgb: np.ndarray) -> np.ndarray: """ Return gray image from rgb image >>> rgb_to_gray(np.array([[[127, 255, 0]]])) array([[187.6453]]) >>> rgb_to_gray(np.array([[[0, 0, 0]]])) array([[0.]]) >>> rgb_to_gray(np.array([[[2, 4, 1]]])) array([[3.0598]]) >>> rgb_to_gray(np.array([[[26, 255, 14], [5, 147, 20], [1, 200, 0]]])) array([[159.0524, 90.0635, 117.6989]]) """ r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def gray_to_binary(gray: np.ndarray) -> np.ndarray: """ Return binary image from gray image >>> gray_to_binary(np.array([[127, 255, 0]])) array([[False, True, False]]) >>> gray_to_binary(np.array([[0]])) array([[False]]) >>> gray_to_binary(np.array([[26.2409, 4.9315, 1.4729]])) array([[False, False, False]]) >>> gray_to_binary(np.array([[26, 255, 14], [5, 147, 20], [1, 200, 0]])) array([[False, True, False], [False, True, False], [False, True, False]]) """ return (gray > 127) & (gray <= 255) def dilation(image: np.ndarray, kernel: np.ndarray) -> np.ndarray: """ Return dilated image >>> dilation(np.array([[True, False, True]]), np.array([[0, 1, 0]])) array([[False, False, False]]) >>> dilation(np.array([[False, False, True]]), np.array([[1, 0, 1]])) array([[False, False, False]]) """ output = np.zeros_like(image) image_padded = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image image_padded[kernel.shape[0] - 2 : -1 :, kernel.shape[1] - 2 : -1 :] = image # Iterate over image & apply kernel for x in range(image.shape[1]): for y in range(image.shape[0]): summation = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() output[y, x] = int(summation > 0) return output if __name__ == "__main__": # read original image lena_path = Path(__file__).resolve().parent / "image_data" / "lena.jpg" lena = np.array(Image.open(lena_path)) # kernel to be applied structuring_element = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) output = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image pil_img = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")