""" The algorithm finds distance between closest pair of points in the given n points. Approach used -> Divide and conquer The points are sorted based on Xco-ords and then based on Yco-ords separately. And by applying divide and conquer approach, minimum distance is obtained recursively. >> Closest points can lie on different sides of partition. This case handled by forming a strip of points whose Xco-ords distance is less than closest_pair_dis from mid-point's Xco-ords. Points sorted based on Yco-ords are used in this step to reduce sorting time. Closest pair distance is found in the strip of points. (closest_in_strip) min(closest_pair_dis, closest_in_strip) would be the final answer. Time complexity: O(n * log n) """ def euclidean_distance_sqr(point1, point2): """ >>> euclidean_distance_sqr([1,2],[2,4]) 5 """ return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2 def column_based_sort(array, column=0): """ >>> column_based_sort([(5, 1), (4, 2), (3, 0)], 1) [(3, 0), (5, 1), (4, 2)] """ return sorted(array, key=lambda x: x[column]) def dis_between_closest_pair(points, points_counts, min_dis=float("inf")): """ brute force approach to find distance between closest pair points Parameters : points, points_count, min_dis (list(tuple(int, int)), int, int) Returns : min_dis (float): distance between closest pair of points >>> dis_between_closest_pair([[1,2],[2,4],[5,7],[8,9],[11,0]],5) 5 """ for i in range(points_counts - 1): for j in range(i + 1, points_counts): current_dis = euclidean_distance_sqr(points[i], points[j]) min_dis = min(min_dis, current_dis) return min_dis def dis_between_closest_in_strip(points, points_counts, min_dis=float("inf")): """ closest pair of points in strip Parameters : points, points_count, min_dis (list(tuple(int, int)), int, int) Returns : min_dis (float): distance btw closest pair of points in the strip (< min_dis) >>> dis_between_closest_in_strip([[1,2],[2,4],[5,7],[8,9],[11,0]],5) 85 """ for i in range(min(6, points_counts - 1), points_counts): for j in range(max(0, i - 6), i): current_dis = euclidean_distance_sqr(points[i], points[j]) min_dis = min(min_dis, current_dis) return min_dis def closest_pair_of_points_sqr(points_sorted_on_x, points_sorted_on_y, points_counts): """divide and conquer approach Parameters : points, points_count (list(tuple(int, int)), int) Returns : (float): distance btw closest pair of points >>> closest_pair_of_points_sqr([(1, 2), (3, 4)], [(5, 6), (7, 8)], 2) 8 """ # base case if points_counts <= 3: return dis_between_closest_pair(points_sorted_on_x, points_counts) # recursion mid = points_counts // 2 closest_in_left = closest_pair_of_points_sqr( points_sorted_on_x, points_sorted_on_y[:mid], mid ) closest_in_right = closest_pair_of_points_sqr( points_sorted_on_y, points_sorted_on_y[mid:], points_counts - mid ) closest_pair_dis = min(closest_in_left, closest_in_right) """ cross_strip contains the points, whose Xcoords are at a distance(< closest_pair_dis) from mid's Xcoord """ cross_strip = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis: cross_strip.append(point) closest_in_strip = dis_between_closest_in_strip( cross_strip, len(cross_strip), closest_pair_dis ) return min(closest_pair_dis, closest_in_strip) def closest_pair_of_points(points, points_counts): """ >>> closest_pair_of_points([(2, 3), (12, 30)], len([(2, 3), (12, 30)])) 28.792360097775937 """ points_sorted_on_x = column_based_sort(points, column=0) points_sorted_on_y = column_based_sort(points, column=1) return ( closest_pair_of_points_sqr( points_sorted_on_x, points_sorted_on_y, points_counts ) ) ** 0.5 if __name__ == "__main__": points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))