#!/usr/bin/python ## Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries """ Implementing logistic regression for classification problem Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac""" import numpy as np import matplotlib.pyplot as plt # get_ipython().run_line_magic('matplotlib', 'inline') from sklearn import datasets # In[67]: # sigmoid function or logistic function is used as a hypothesis function in classification problems def sigmoid_function(z): return 1 / (1 + np.exp(-z)) def cost_function(h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def log_likelihood(X, Y, weights): scores = np.dot(X, weights) return np.sum(Y * scores - np.log(1 + np.exp(scores))) # here alpha is the learning rate, X is the feature matrix,y is the target matrix def logistic_reg(alpha, X, y, max_iterations=70000): theta = np.zeros(X.shape[1]) for iterations in range(max_iterations): z = np.dot(X, theta) h = sigmoid_function(z) gradient = np.dot(X.T, h - y) / y.size theta = theta - alpha * gradient # updating the weights z = np.dot(X, theta) h = sigmoid_function(z) J = cost_function(h, y) if iterations % 100 == 0: print(f"loss: {J} \t") # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": iris = datasets.load_iris() X = iris.data[:, :2] y = (iris.target != 0) * 1 alpha = 0.1 theta = logistic_reg(alpha, X, y, max_iterations=70000) print("theta: ", theta) # printing the theta i.e our weights vector def predict_prob(X): return sigmoid_function( np.dot(X, theta) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color="b", label="0") plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color="r", label="1") (x1_min, x1_max) = (X[:, 0].min(), X[:, 0].max()) (x2_min, x2_max) = (X[:, 1].min(), X[:, 1].max()) (xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max)) grid = np.c_[xx1.ravel(), xx2.ravel()] probs = predict_prob(grid).reshape(xx1.shape) plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()