import sys """ Dynamic Programming Implementation of Matrix Chain Multiplication Time Complexity: O(n^3) Space Complexity: O(n^2) """ def matrix_chain_order(array): n = len(array) matrix = [[0 for x in range(n)] for x in range(n)] sol = [[0 for x in range(n)] for x in range(n)] for chain_length in range(2, n): for a in range(1, n - chain_length + 1): b = a + chain_length - 1 matrix[a][b] = sys.maxsize for c in range(a, b): cost = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: matrix[a][b] = cost sol[a][b] = c return matrix, sol # Print order of matrix with Ai as Matrix def print_optiomal_solution(optimal_solution, i, j): if i == j: print("A" + str(i), end=" ") else: print("(", end=" ") print_optiomal_solution(optimal_solution, i, optimal_solution[i][j]) print_optiomal_solution(optimal_solution, optimal_solution[i][j] + 1, j) print(")", end=" ") def main(): array = [30, 35, 15, 5, 10, 20, 25] n = len(array) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 matrix, optimal_solution = matrix_chain_order(array) print("No. of Operation required: " + str(matrix[1][n - 1])) print_optiomal_solution(optimal_solution, 1, n - 1) if __name__ == "__main__": main()