""" Lorentz transformations describe the transition between two inertial reference frames F and F', each of which is moving in some direction with respect to the other. This code only calculates Lorentz transformations for movement in the x direction with no spacial rotation (i.e., a Lorentz boost in the x direction). The Lorentz transformations are calculated here as linear transformations of four-vectors [ct, x, y, z] described by Minkowski space. Note that t (time) is multiplied by c (the speed of light) in the first entry of each four-vector. Thus, if X = [ct; x; y; z] and X' = [ct'; x'; y'; z'] are the four-vectors for two inertial reference frames and X' moves in the x direction with velocity v with respect to X, then the Lorentz transformation from X to X' is X' = BX, where | γ -γβ 0 0| B = |-γβ γ 0 0| | 0 0 1 0| | 0 0 0 1| is the matrix describing the Lorentz boost between X and X', γ = 1 / √(1 - v²/c²) is the Lorentz factor, and β = v/c is the velocity as a fraction of c. Reference: https://en.wikipedia.org/wiki/Lorentz_transformation """ from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) c = 299792458 # Symbols ct, x, y, z = symbols("ct x y z") # Vehicle's speed divided by speed of light (no units) def beta(velocity: float) -> float: """ Calculates β = v/c, the given velocity as a fraction of c >>> beta(c) 1.0 >>> beta(199792458) 0.666435904801848 >>> beta(1e5) 0.00033356409519815205 >>> beta(0.2) Traceback (most recent call last): ... ValueError: Speed must be greater than or equal to 1! """ if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!") elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!") return velocity / c def gamma(velocity: float) -> float: """ Calculate the Lorentz factor γ = 1 / √(1 - v²/c²) for a given velocity >>> gamma(4) 1.0000000000000002 >>> gamma(1e5) 1.0000000556325075 >>> gamma(3e7) 1.005044845777813 >>> gamma(2.8e8) 2.7985595722318277 >>> gamma(299792451) 4627.49902669495 >>> gamma(0.3) Traceback (most recent call last): ... ValueError: Speed must be greater than or equal to 1! >>> gamma(2 * c) Traceback (most recent call last): ... ValueError: Speed must not exceed light speed 299,792,458 [m/s]! """ return 1 / sqrt(1 - beta(velocity) ** 2) def transformation_matrix(velocity: float) -> np.ndarray: """ Calculate the Lorentz transformation matrix for movement in the x direction: | γ -γβ 0 0| |-γβ γ 0 0| | 0 0 1 0| | 0 0 0 1| where γ is the Lorentz factor and β is the velocity as a fraction of c >>> transformation_matrix(29979245) array([[ 1.00503781, -0.10050378, 0. , 0. ], [-0.10050378, 1.00503781, 0. , 0. ], [ 0. , 0. , 1. , 0. ], [ 0. , 0. , 0. , 1. ]]) >>> transformation_matrix(19979245.2) array([[ 1.00222811, -0.06679208, 0. , 0. ], [-0.06679208, 1.00222811, 0. , 0. ], [ 0. , 0. , 1. , 0. ], [ 0. , 0. , 0. , 1. ]]) >>> transformation_matrix(1) array([[ 1.00000000e+00, -3.33564095e-09, 0.00000000e+00, 0.00000000e+00], [-3.33564095e-09, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]) >>> transformation_matrix(0) Traceback (most recent call last): ... ValueError: Speed must be greater than or equal to 1! >>> transformation_matrix(c * 1.5) Traceback (most recent call last): ... ValueError: Speed must not exceed light speed 299,792,458 [m/s]! """ return np.array( [ [gamma(velocity), -gamma(velocity) * beta(velocity), 0, 0], [-gamma(velocity) * beta(velocity), gamma(velocity), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def transform(velocity: float, event: np.ndarray | None = None) -> np.ndarray: """ Calculate a Lorentz transformation for movement in the x direction given a velocity and a four-vector for an inertial reference frame If no four-vector is given, then calculate the transformation symbolically with variables >>> transform(29979245, np.array([1, 2, 3, 4])) array([ 3.01302757e+08, -3.01302729e+07, 3.00000000e+00, 4.00000000e+00]) >>> transform(29979245) array([1.00503781498831*ct - 0.100503778816875*x, -0.100503778816875*ct + 1.00503781498831*x, 1.0*y, 1.0*z], dtype=object) >>> transform(19879210.2) array([1.0022057787097*ct - 0.066456172618675*x, -0.066456172618675*ct + 1.0022057787097*x, 1.0*y, 1.0*z], dtype=object) >>> transform(299792459, np.array([1, 1, 1, 1])) Traceback (most recent call last): ... ValueError: Speed must not exceed light speed 299,792,458 [m/s]! >>> transform(-1, np.array([1, 1, 1, 1])) Traceback (most recent call last): ... ValueError: Speed must be greater than or equal to 1! """ # Ensure event is not empty if event is None: event = np.array([ct, x, y, z]) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(velocity) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: four_vector = transform(29979245) print("Example of four vector: ") print(f"ct' = {four_vector[0]}") print(f"x' = {four_vector[1]}") print(f"y' = {four_vector[2]}") print(f"z' = {four_vector[3]}") # Substitute symbols with numerical values sub_dict = {ct: c, x: 1, y: 1, z: 1} numerical_vector = [four_vector[i].subs(sub_dict) for i in range(4)] print(f"\n{numerical_vector}")