# https://en.wikipedia.org/wiki/B%C3%A9zier_curve # https://www.tutorialspoint.com/computer_graphics/computer_graphics_curves.htm from typing import List, Tuple from scipy.special import comb class BezierCurve: """ Bezier curve is a weighted sum of a set of control points. Generate Bezier curves from a given set of control points. This implementation works only for 2d coordinates in the xy plane. """ def __init__(self, list_of_points: List[Tuple[float, float]]): """ list_of_points: Control points in the xy plane on which to interpolate. These points control the behavior (shape) of the Bezier curve. """ self.list_of_points = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. self.degree = len(list_of_points) - 1 def basis_function(self, t: float) -> List[float]: """ The basis function determines the weight of each control point at time t. t: time value between 0 and 1 inclusive at which to evaluate the basis of the curve. returns the x, y values of basis function at time t >>> curve = BezierCurve([(1,1), (1,2)]) >>> curve.basis_function(0) [1.0, 0.0] >>> curve.basis_function(1) [0.0, 1.0] """ assert 0 <= t <= 1, "Time t must be between 0 and 1." output_values: List[float] = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree, i) * ((1 - t) ** (self.degree - i)) * (t ** i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(output_values), 5) == 1 return output_values def bezier_curve_function(self, t: float) -> Tuple[float, float]: """ The function to produce the values of the Bezier curve at time t. t: the value of time t at which to evaluate the Bezier function Returns the x, y coordinates of the Bezier curve at time t. The first point in the curve is when t = 0. The last point in the curve is when t = 1. >>> curve = BezierCurve([(1,1), (1,2)]) >>> curve.bezier_curve_function(0) (1.0, 1.0) >>> curve.bezier_curve_function(1) (1.0, 2.0) """ assert 0 <= t <= 1, "Time t must be between 0 and 1." basis_function = self.basis_function(t) x = 0.0 y = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def plot_curve(self, step_size: float = 0.01): """ Plots the Bezier curve using matplotlib plotting capabilities. step_size: defines the step(s) at which to evaluate the Bezier curve. The smaller the step size, the finer the curve produced. """ from matplotlib import pyplot as plt to_plot_x: List[float] = [] # x coordinates of points to plot to_plot_y: List[float] = [] # y coordinates of points to plot t = 0.0 while t <= 1: value = self.bezier_curve_function(t) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size x = [i[0] for i in self.list_of_points] y = [i[1] for i in self.list_of_points] plt.plot( to_plot_x, to_plot_y, color="blue", label="Curve of Degree " + str(self.degree), ) plt.scatter(x, y, color="red", label="Control Points") plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3