from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier #Load iris file iris = load_iris() iris.keys() print('Target names: \n {} '.format(iris.target_names)) print('\n Features: \n {}'.format(iris.feature_names)) #Train set e Test set X_train, X_test, y_train, y_test = train_test_split(iris['data'],iris['target'], random_state=4) #KNN knn = KNeighborsClassifier (n_neighbors = 1) knn.fit(X_train, y_train) #new array to test X_new = [[1,2,1,4], [2,3,4,5]] prediction = knn.predict(X_new) print('\nNew array: \n {}' '\n\nTarget Names Prediction: \n {}'.format(X_new, iris['target_names'][prediction]))