""" Doctest for RidgeRegression class Tests include: - feature_scaling - fit - predict - mean_absolute_error To run these tests, use the following command: python -m doctest test_ridge_regression.py -v """ # from ridge_regression import RidgeRegression def test_feature_scaling(): """ Tests the feature_scaling function of RidgeRegression. -------- >>> model = RidgeRegression() >>> X = np.array([[1, 2], [2, 3], [3, 4]]) >>> X_scaled, mean, std = model.feature_scaling(X) >>> np.round(X_scaled, 2) array([[-1.22, -1.22], [ 0. , 0. ], [ 1.22, 1.22]]) >>> np.round(mean, 2) array([2., 3.]) >>> np.round(std, 2) array([0.82, 0.82]) """ def test_fit(): """ Tests the fit function of RidgeRegression -------- >>> model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000) >>> X = np.array([[1], [2], [3]]) >>> y = np.array([2, 3, 4]) # Adding a bias term >>> X = np.c_[np.ones(X.shape[0]), X] # Fit the model >>> model.fit(X, y) # Check if the weights have been updated >>> np.round(model.theta, decimals=2) array([0. , 0.79]) """ def test_predict(): """ Tests the predict function of RidgeRegression -------- >>> model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000) >>> X = np.array([[1], [2], [3]]) >>> y = np.array([2, 3, 4]) # Adding a bias term >>> X = np.c_[np.ones(X.shape[0]), X] # Fit the model >>> model.fit(X, y) # Predict with the model >>> predictions = model.predict(X) >>> np.round(predictions, decimals=2) array([-0.97, 0. , 0.97]) """ def test_mean_absolute_error(): """ Tests the mean_absolute_error function of RidgeRegression -------- >>> model = RidgeRegression() >>> y_true = np.array([2, 3, 4]) >>> y_pred = np.array([2.1, 3.0, 3.9]) >>> mae = model.mean_absolute_error(y_true, y_pred) >>> float(np.round(mae, 2)) 0.07 """ if __name__ == "__main__": import doctest doctest.testmod()