""" developed by: markmelnic original repo: https://github.com/markmelnic/Scoring-Algorithm Analyse data using a range based percentual proximity algorithm and calculate the linear maximum likelihood estimation. The basic principle is that all values supplied will be broken down to a range from 0 to 1 and each column's score will be added up to get the total score. ========== Example for data of vehicles price|mileage|registration_year 20k |60k |2012 22k |50k |2011 23k |90k |2015 16k |210k |2010 We want the vehicle with the lowest price, lowest mileage but newest registration year. Thus the weights for each column are as follows: [0, 0, 1] """ def get_data(source_data: list[list[float]]) -> list[list[float]]: """ >>> get_data([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]]) [[20.0, 23.0, 22.0], [60.0, 90.0, 50.0], [2012.0, 2015.0, 2011.0]] """ data_lists: list[list[float]] = [] for data in source_data: for i, el in enumerate(data): if len(data_lists) < i + 1: data_lists.append([]) data_lists[i].append(float(el)) return data_lists def calculate_each_score( data_lists: list[list[float]], weights: list[int] ) -> list[list[float]]: """ >>> calculate_each_score([[20, 23, 22], [60, 90, 50], [2012, 2015, 2011]], ... [0, 0, 1]) [[1.0, 0.0, 0.33333333333333337], [0.75, 0.0, 1.0], [0.25, 1.0, 0.0]] """ score_lists: list[list[float]] = [] for dlist, weight in zip(data_lists, weights): mind = min(dlist) maxd = max(dlist) score: list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind))) except ZeroDivisionError: score.append(1) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind)) except ZeroDivisionError: score.append(0) # weight not 0 or 1 else: raise ValueError(f"Invalid weight of {weight:f} provided") score_lists.append(score) return score_lists def generate_final_scores(score_lists: list[list[float]]) -> list[float]: """ >>> generate_final_scores([[1.0, 0.0, 0.33333333333333337], ... [0.75, 0.0, 1.0], ... [0.25, 1.0, 0.0]]) [2.0, 1.0, 1.3333333333333335] """ # initialize final scores final_scores: list[float] = [0 for i in range(len(score_lists[0]))] for slist in score_lists: for j, ele in enumerate(slist): final_scores[j] = final_scores[j] + ele return final_scores def procentual_proximity( source_data: list[list[float]], weights: list[int] ) -> list[list[float]]: """ weights - int list possible values - 0 / 1 0 if lower values have higher weight in the data set 1 if higher values have higher weight in the data set >>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1]) [[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]] """ data_lists = get_data(source_data) score_lists = calculate_each_score(data_lists, weights) final_scores = generate_final_scores(score_lists) # append scores to source data for i, ele in enumerate(final_scores): source_data[i].append(ele) return source_data