""" These two functions will return the radii of impact for a target object of mass M and radius R as well as it's effective cross sectional area sigma. That is to say any projectile with velocity v passing within sigma, will impact the target object with mass M. The derivation of which is given at the bottom of this file. The derivation shows that a projectile does not need to aim directly at the target body in order to hit it, as R_capture>R_target. Astronomers refer to the effective cross section for capture as sigma=π*R_capture**2. This algorithm does not account for an N-body problem. """ from math import pow, sqrt # noqa: A004 from scipy.constants import G, c, pi def capture_radii( target_body_radius: float, target_body_mass: float, projectile_velocity: float ) -> float: """ Input Params: ------------- target_body_radius: Radius of the central body SI units: meters | m target_body_mass: Mass of the central body SI units: kilograms | kg projectile_velocity: Velocity of object moving toward central body SI units: meters/second | m/s Returns: -------- >>> capture_radii(6.957e8, 1.99e30, 25000.0) 17209590691.0 >>> capture_radii(-6.957e8, 1.99e30, 25000.0) Traceback (most recent call last): ... ValueError: Radius cannot be less than 0 >>> capture_radii(6.957e8, -1.99e30, 25000.0) Traceback (most recent call last): ... ValueError: Mass cannot be less than 0 >>> capture_radii(6.957e8, 1.99e30, c+1) Traceback (most recent call last): ... ValueError: Cannot go beyond speed of light Returned SI units: ------------------ meters | m """ if target_body_mass < 0: raise ValueError("Mass cannot be less than 0") if target_body_radius < 0: raise ValueError("Radius cannot be less than 0") if projectile_velocity > c: raise ValueError("Cannot go beyond speed of light") escape_velocity_squared = (2 * G * target_body_mass) / target_body_radius capture_radius = target_body_radius * sqrt( 1 + escape_velocity_squared / pow(projectile_velocity, 2) ) return round(capture_radius, 0) def capture_area(capture_radius: float) -> float: """ Input Param: ------------ capture_radius: The radius of orbital capture and impact for a central body of mass M and a projectile moving towards it with velocity v SI units: meters | m Returns: -------- >>> capture_area(17209590691) 9.304455331329126e+20 >>> capture_area(-1) Traceback (most recent call last): ... ValueError: Cannot have a capture radius less than 0 Returned SI units: ------------------ meters*meters | m**2 """ if capture_radius < 0: raise ValueError("Cannot have a capture radius less than 0") sigma = pi * pow(capture_radius, 2) return round(sigma, 0) if __name__ == "__main__": from doctest import testmod testmod() """ Derivation: Let: Mt=target mass, Rt=target radius, v=projectile_velocity, r_0=radius of projectile at instant 0 to CM of target v_p=v at closest approach, r_p=radius from projectile to target CM at closest approach, R_capture= radius of impact for projectile with velocity v (1)At time=0 the projectile's energy falling from infinity| E=K+U=0.5*m*(v**2)+0 E_initial=0.5*m*(v**2) (2)at time=0 the angular momentum of the projectile relative to CM target| L_initial=m*r_0*v*sin(Θ)->m*r_0*v*(R_capture/r_0)->m*v*R_capture L_i=m*v*R_capture (3)The energy of the projectile at closest approach will be its kinetic energy at closest approach plus gravitational potential energy(-(GMm)/R)| E_p=K_p+U_p->E_p=0.5*m*(v_p**2)-(G*Mt*m)/r_p E_p=0.0.5*m*(v_p**2)-(G*Mt*m)/r_p (4)The angular momentum of the projectile relative to the target at closest approach will be L_p=m*r_p*v_p*sin(Θ), however relative to the target Θ=90° sin(90°)=1| L_p=m*r_p*v_p (5)Using conservation of angular momentum and energy, we can write a quadratic equation that solves for r_p| (a) Ei=Ep-> 0.5*m*(v**2)=0.5*m*(v_p**2)-(G*Mt*m)/r_p-> v**2=v_p**2-(2*G*Mt)/r_p (b) Li=Lp-> m*v*R_capture=m*r_p*v_p-> v*R_capture=r_p*v_p-> v_p=(v*R_capture)/r_p (c) b plugs int a| v**2=((v*R_capture)/r_p)**2-(2*G*Mt)/r_p-> v**2-(v**2)*(R_c**2)/(r_p**2)+(2*G*Mt)/r_p=0-> (v**2)*(r_p**2)+2*G*Mt*r_p-(v**2)*(R_c**2)=0 (d) Using the quadratic formula, we'll solve for r_p then rearrange to solve to R_capture r_p=(-2*G*Mt ± sqrt(4*G^2*Mt^2+ 4(v^4*R_c^2)))/(2*v^2)-> r_p=(-G*Mt ± sqrt(G^2*Mt+v^4*R_c^2))/v^2-> r_p<0 is something we can ignore, as it has no physical meaning for our purposes.-> r_p=(-G*Mt)/v^2 + sqrt(G^2*Mt^2/v^4 + R_c^2) (e)We are trying to solve for R_c. We are looking for impact, so we want r_p=Rt Rt + G*Mt/v^2 = sqrt(G^2*Mt^2/v^4 + R_c^2)-> (Rt + G*Mt/v^2)^2 = G^2*Mt^2/v^4 + R_c^2-> Rt^2 + 2*G*Mt*Rt/v^2 + G^2*Mt^2/v^4 = G^2*Mt^2/v^4 + R_c^2-> Rt**2 + 2*G*Mt*Rt/v**2 = R_c**2-> Rt**2 * (1 + 2*G*Mt/Rt *1/v**2) = R_c**2-> escape velocity = sqrt(2GM/R)= v_escape**2=2GM/R-> Rt**2 * (1 + v_esc**2/v**2) = R_c**2-> (6) R_capture = Rt * sqrt(1 + v_esc**2/v**2) Source: Problem Set 3 #8 c.Fall_2017|Honors Astronomy|Professor Rachel Bezanson Source #2: http://www.nssc.ac.cn/wxzygx/weixin/201607/P020160718380095698873.pdf 8.8 Planetary Rendezvous: Pg.368 """