""" Convolutional Neural Network Objective : To train a CNN model detect if TB is present in Lung X-ray or not. Resources CNN Theory : https://en.wikipedia.org/wiki/Convolutional_neural_network Resources Tensorflow : https://www.tensorflow.org/tutorials/images/cnn Download dataset from : https://lhncbc.nlm.nih.gov/LHC-publications/pubs/TuberculosisChestXrayImageDataSets.html 1. Download the dataset folder and create two folder training set and test set in the parent dataset folder 2. Move 30-40 image from both TB positive and TB Negative folder in the test set folder 3. The labels of the images will be extracted from the folder name the image is present in. """ # Part 1 - Building the CNN import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) classifier = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPooling2D(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.Conv2D(32, (3, 3), activation="relu")) classifier.add(layers.MaxPooling2D(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') train_datagen = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) training_set = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) test_set = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions test_image = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) test_image = tf.keras.preprocessing.image.img_to_array(test_image) test_image = np.expand_dims(test_image, axis=0) result = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: prediction = "Normal" if result[0][0] == 1: prediction = "Abnormality detected"