class Node: """A node in the Fibonacci heap. Each node maintains references to its key, degree (number of children), marked status, parent, child, and circular linked list references (left/right). Attributes: key: The key value stored in the node degree: Number of children of the node marked: Boolean indicating if the node is marked parent: Reference to parent node child: Reference to one child node left: Reference to left sibling in circular list right: Reference to right sibling in circular list Examples: >>> node = Node(5) >>> node.key 5 >>> node.degree 0 >>> node.marked False >>> node.left == node True >>> node.right == node True """ def __init__(self, key) -> None: self.key = key or None self.degree = 0 self.marked = False self.parent = Node(None) self.child = Node(None) self.left = self self.right = self class FibonacciHeap: """Implementation of a Fibonacci heap using circular linked lists. A Fibonacci heap is a collection of trees satisfying the min-heap property. This implementation uses circular linked lists for both the root list and child lists of nodes. Attributes: min_node: Reference to the node with minimum key total_nodes: Total number of nodes in the heap Reference: Introduction to Algorithms (CLRS) Chapter 19 https://en.wikipedia.org/wiki/Fibonacci_heap Examples: >>> heap = FibonacciHeap() >>> heap.is_empty() True >>> node = heap.insert(3) >>> node.key 3 >>> node2 = heap.insert(2) >>> node2.key 2 >>> heap.find_min() 2 >>> heap.extract_min() 2 >>> heap.find_min() 3 """ def __init__(self) -> None: self.min_node = Node(None) self.total_nodes = 0 def insert(self, key) -> Node: """Insert a new key into the heap. Args: key: The key value to insert Returns: Node: The newly created node Examples: >>> heap = FibonacciHeap() >>> node = heap.insert(5) >>> node.key 5 >>> heap.find_min() 5 >>> node2 = heap.insert(3) >>> node2.key 3 >>> heap.find_min() 3 """ new_node = Node(key) if self.min_node is None: self.min_node = new_node else: self._insert_into_circular_list(self.min_node, new_node) if new_node.key < self.min_node.key: self.min_node = new_node self.total_nodes += 1 return new_node def _insert_into_circular_list(self, base_node, node_to_insert) -> Node: """Insert node into circular linked list. Args: base_node: The reference node in the circular list node_to_insert: The node to insert into the list Returns: Node: The base node Examples: >>> heap = FibonacciHeap() >>> node1 = Node(1) >>> node2 = Node(2) >>> result = heap._insert_into_circular_list(node1, node2) >>> result == node1 True >>> node1.right == node2 True >>> node2.left == node1 True """ if base_node.key is None: return node_to_insert node_to_insert.right = base_node.right node_to_insert.left = base_node base_node.right.left = node_to_insert base_node.right = node_to_insert return base_node def extract_min(self) -> float: """Remove and return the minimum key from the heap. This operation removes the node with the minimum key from the heap, adds all its children to the root list, and consolidates the heap to maintain the Fibonacci heap properties. This is one of the more complex operations with amortized time complexity of O(log n). Returns: Node: The minimum key value that was removed, or None if the heap is empty Example: >>> heap = FibonacciHeap() >>> node1 = heap.insert(3) >>> node2 = heap.insert(1) >>> node3 = heap.insert(2) >>> heap.extract_min() # Removes and returns 1 1 >>> heap.extract_min() # Removes and returns 2 2 >>> heap.extract_min() # Removes and returns 3 3 >>> heap.extract_min() # Heap is now empty Note: This operation may trigger heap consolidation to maintain the Fibonacci heap properties after removal of the minimum node. """ if self.min_node is None: return Node(None).key min_node = self.min_node if min_node.child: current_child = min_node.child last_child = min_node.child.left while True: next_child = current_child.right self._insert_into_circular_list(self.min_node, current_child) current_child.parent.key = None if current_child == last_child: break current_child = next_child min_node.left.right = min_node.right min_node.right.left = min_node.left if min_node == min_node.right: self.min_node.key = None else: self.min_node = min_node.right self._consolidate() self.total_nodes -= 1 return min_node.key def _consolidate(self): """Consolidate the heap after removing the minimum node. This internal method maintains the Fibonacci heap properties by combining trees of the same degree until no two roots have the same degree. This process is key to maintaining the efficiency of the data structure. The consolidation process works by: 1. Creating a temporary array indexed by tree degree 2. Processing each root node and combining trees of the same degree 3. Reconstructing the root list and finding the new minimum Time complexity: O(log n) amortized Note: This is an internal method called by extract_min and should not be called directly from outside the class. """ max_degree = int(self.total_nodes**0.5) + 1 degree_table = [Node(None)] * max_degree roots = [] if self.min_node: current_root = self.min_node while True: roots.append(current_root) if current_root.right == self.min_node: break current_root = current_root.right for current_root in roots: root_node = current_root current_degree = root_node.degree while degree_table[current_degree] is not None: other_root = degree_table[current_degree] if root_node.key > other_root.key: root_node, other_root = other_root, root_node other_root.left.right = other_root.right other_root.right.left = other_root.left if root_node.child.key is None: root_node.child = other_root other_root.right = other_root other_root.left = other_root else: self._insert_into_circular_list(root_node.child, other_root) other_root.parent = root_node root_node.degree += 1 other_root.marked = False degree_table[current_degree] = Node(None) current_degree += 1 degree_table[current_degree] = root_node self.min_node.key = None for degree in range(max_degree): if degree_table[degree] is not None and ( self.min_node is None or (degree_table[degree] < self.min_node.key) ): self.min_node = degree_table[degree] def decrease_key(self, node, new_key): """Decrease the key value of a given node. This operation updates the key of a node to a new, smaller value and maintains the min-heap property by potentially cutting the node from its parent and performing cascading cuts up the tree. Args: node: The node whose key should be decreased new_key: The new key value, must be smaller than the current key Example: >>> heap = FibonacciHeap() >>> node1 = heap.insert(5) >>> heap.decrease_key(node, 3) >>> node.key 3 >>> heap.find_min() 3 >>> heap.decrease_key(node, 1) >>> node.key 1 >>> heap.find_min() 1 """ if new_key > node.key: raise ValueError("New key is greater than current key") node.key = new_key parent_node = node.parent if parent_node.key is not None and node.key < parent_node.key: self._cut(node, parent_node) self._cascading_cut(parent_node) if node.key < self.min_node.key: self.min_node = node def _cut(self, child_node, parent_node): """Cut a node from its parent and add it to the root list. This is a helper method used in decrease_key operations. When a node's key becomes smaller than its parent's key, it needs to be cut from its parent and added to the root list to maintain the min-heap property. Args: child_node: The node to be cut from its parent parent_node: The parent node from which to cut Note: This is an internal method that maintains heap properties during decrease_key operations. It should not be called directly from outside the class. """ if child_node.right == child_node: parent_node.child = Node(None) else: parent_node.child = child_node.right child_node.right.left = child_node.left child_node.left.right = child_node.right parent_node.degree -= 1 self._insert_into_circular_list(self.min_node, child_node) child_node.parent = Node(None) child_node.marked = False def _cascading_cut(self, current_node) -> None: """Perform cascading cut operation. Args: current_node: The node to start cascading cut from """ if (parent_node := current_node.parent) is not None: if not current_node.marked: current_node.marked = True else: self._cut(current_node, parent_node) self._cascading_cut(parent_node) def delete(self, node) -> None: """Delete a node from the heap. This operation removes a given node from the heap by first decreasing its key to negative infinity (making it the minimum) and then extracting the minimum. Args: node: The node to be deleted from the heap Example: >>> heap = FibonacciHeap() >>> node1 = heap.insert(3) >>> node2 = heap.insert(2) >>> heap.delete(node1) >>> heap.find_min() 2 >>> heap.total_nodes 1 Note: This operation has an amortized time complexity of O(log n) as it combines decrease_key and extract_min operations. """ self.decrease_key(node, float("-inf")) self.extract_min() def find_min(self) -> float: """Return the minimum key without removing it from the heap. This operation provides quick access to the minimum key in the heap without modifying the heap structure. Returns: float | None: The minimum key value, or None if the heap is empty Example: >>> heap = FibonacciHeap() >>> heap.find_min() is None True >>> node1 = heap.insert(3) >>> heap.find_min() 3 """ return self.min_node.key if self.min_node else Node(None).key def is_empty(self) -> bool: """Check if heap is empty. Returns: bool: True if heap is empty, False otherwise Examples: >>> heap = FibonacciHeap() >>> heap.is_empty() True >>> node = heap.insert(1) >>> heap.is_empty() False """ return self.min_node.key is None def merge(self, other_heap) -> None: """Merge another Fibonacci heap into this one. This operation combines two Fibonacci heaps by concatenating their root lists and updating the minimum pointer if necessary. The other heap is effectively consumed in this process. Args: other_heap: Another FibonacciHeap instance to merge into this one Example: >>> heap1 = FibonacciHeap() >>> node1 = heap1.insert(3) >>> heap2 = FibonacciHeap() >>> node2 = heap2.insert(2) >>> heap1.merge(heap2) >>> heap1.find_min() 2 >>> heap1.total_nodes 2 """ if other_heap.min_node.key is None: return if self.min_node.key is None: self.min_node = other_heap.min_node else: self.min_node.right.left = other_heap.min_node.left other_heap.min_node.left.right = self.min_node.right self.min_node.right = other_heap.min_node other_heap.min_node.left = self.min_node if other_heap.min_node.key < self.min_node.key: self.min_node = other_heap.min_node self.total_nodes += other_heap.total_nodes if __name__ == "__main__": import doctest doctest.testmod()