Python/machine_learning/gaussian_naive_bayes.py.broken.txt
Victor Rodrigues da Silva 3f8b2af14b
Add autoclave cipher (#8029)
* Add autoclave cipher

* Update autoclave with the given suggestions

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fixing errors

* Another fixes

* Update and rename autoclave.py to autokey.py

* Rename gaussian_naive_bayes.py to gaussian_naive_bayes.py.broken.txt

* Rename gradient_boosting_regressor.py to gradient_boosting_regressor.py.broken.txt

* Rename random_forest_classifier.py to random_forest_classifier.py.broken.txt

* Rename random_forest_regressor.py to random_forest_regressor.py.broken.txt

* Rename equal_loudness_filter.py to equal_loudness_filter.py.broken.txt

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2022-12-18 23:26:39 +01:00

53 lines
1.4 KiB
Plaintext

# Gaussian Naive Bayes Example
import time
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score, plot_confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
def main():
"""
Gaussian Naive Bayes Example using sklearn function.
Iris type dataset is used to demonstrate algorithm.
"""
# Load Iris dataset
iris = load_iris()
# Split dataset into train and test data
x = iris["data"] # features
y = iris["target"]
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.3, random_state=1
)
# Gaussian Naive Bayes
nb_model = GaussianNB()
time.sleep(2.9)
model_fit = nb_model.fit(x_train, y_train)
y_pred = model_fit.predict(x_test) # Predictions on the test set
# Display Confusion Matrix
plot_confusion_matrix(
nb_model,
x_test,
y_test,
display_labels=iris["target_names"],
cmap="Blues", # although, Greys_r has a better contrast...
normalize="true",
)
plt.title("Normalized Confusion Matrix - IRIS Dataset")
plt.show()
time.sleep(1.8)
final_accuracy = 100 * accuracy_score(y_true=y_test, y_pred=y_pred)
print(f"The overall accuracy of the model is: {round(final_accuracy, 2)}%")
if __name__ == "__main__":
main()