Python/neural_network/activation_functions/scaled_exponential_linear_unit.py
Adarsh Acharya 153c35eac0
Added Scaled Exponential Linear Unit Activation Function (#9027)
* Added Scaled Exponential Linear Unit Activation Function

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update scaled_exponential_linear_unit.py

* Update scaled_exponential_linear_unit.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update scaled_exponential_linear_unit.py

* Update scaled_exponential_linear_unit.py

* Update scaled_exponential_linear_unit.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update scaled_exponential_linear_unit.py

* Update scaled_exponential_linear_unit.py

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-09-06 15:16:51 -04:00

45 lines
1.5 KiB
Python

"""
Implements the Scaled Exponential Linear Unit or SELU function.
The function takes a vector of K real numbers and two real numbers
alpha(default = 1.6732) & lambda (default = 1.0507) as input and
then applies the SELU function to each element of the vector.
SELU is a self-normalizing activation function. It is a variant
of the ELU. The main advantage of SELU is that we can be sure
that the output will always be standardized due to its
self-normalizing behavior. That means there is no need to
include Batch-Normalization layers.
References :
https://iq.opengenus.org/scaled-exponential-linear-unit/
"""
import numpy as np
def scaled_exponential_linear_unit(
vector: np.ndarray, alpha: float = 1.6732, lambda_: float = 1.0507
) -> np.ndarray:
"""
Applies the Scaled Exponential Linear Unit function to each element of the vector.
Parameters :
vector : np.ndarray
alpha : float (default = 1.6732)
lambda_ : float (default = 1.0507)
Returns : np.ndarray
Formula : f(x) = lambda_ * x if x > 0
lambda_ * alpha * (e**x - 1) if x <= 0
Examples :
>>> scaled_exponential_linear_unit(vector=np.array([1.3, 3.7, 2.4]))
array([1.36591, 3.88759, 2.52168])
>>> scaled_exponential_linear_unit(vector=np.array([1.3, 4.7, 8.2]))
array([1.36591, 4.93829, 8.61574])
"""
return lambda_ * np.where(vector > 0, vector, alpha * (np.exp(vector) - 1))
if __name__ == "__main__":
import doctest
doctest.testmod()