mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
d9562033f6
* avg and mps speed formulae added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * avg and mps speed formulae added * fixed_spacing * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * spacing * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * ws * added amicable numbers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * added amicable numbers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * spacing * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * removed * changed name of file and added code improvements * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * issues fixed due to pi * requested changes added * Created doppler_effect_of_sound.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Updated doppler_effect_of_sound.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * added desc names * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fixed spacing * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * renamed doppler_effect_of_sound.py to doppler_frequency.py * used expection handling rather than print statements * fixed spacing for ruff * Update doppler_frequency.py This is super slick! Well done. --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
239 lines
6.7 KiB
Plaintext
239 lines
6.7 KiB
Plaintext
"""
|
|
Perceptron
|
|
w = w + N * (d(k) - y) * x(k)
|
|
|
|
Using perceptron network for oil analysis, with Measuring of 3 parameters
|
|
that represent chemical characteristics we can classify the oil, in p1 or p2
|
|
p1 = -1
|
|
p2 = 1
|
|
"""
|
|
import random
|
|
|
|
|
|
class Perceptron:
|
|
def __init__(
|
|
self,
|
|
sample: list[list[float]],
|
|
target: list[int],
|
|
learning_rate: float = 0.01,
|
|
epoch_number: int = 1000,
|
|
bias: float = -1,
|
|
) -> None:
|
|
"""
|
|
Initializes a Perceptron network for oil analysis
|
|
:param sample: sample dataset of 3 parameters with shape [30,3]
|
|
:param target: variable for classification with two possible states -1 or 1
|
|
:param learning_rate: learning rate used in optimizing.
|
|
:param epoch_number: number of epochs to train network on.
|
|
:param bias: bias value for the network.
|
|
|
|
>>> p = Perceptron([], (0, 1, 2))
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Sample data can not be empty
|
|
>>> p = Perceptron(([0], 1, 2), [])
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Target data can not be empty
|
|
>>> p = Perceptron(([0], 1, 2), (0, 1))
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Sample data and Target data do not have matching lengths
|
|
"""
|
|
self.sample = sample
|
|
if len(self.sample) == 0:
|
|
raise ValueError("Sample data can not be empty")
|
|
self.target = target
|
|
if len(self.target) == 0:
|
|
raise ValueError("Target data can not be empty")
|
|
if len(self.sample) != len(self.target):
|
|
raise ValueError("Sample data and Target data do not have matching lengths")
|
|
self.learning_rate = learning_rate
|
|
self.epoch_number = epoch_number
|
|
self.bias = bias
|
|
self.number_sample = len(sample)
|
|
self.col_sample = len(sample[0]) # number of columns in dataset
|
|
self.weight: list = []
|
|
|
|
def training(self) -> None:
|
|
"""
|
|
Trains perceptron for epochs <= given number of epochs
|
|
:return: None
|
|
>>> data = [[2.0149, 0.6192, 10.9263]]
|
|
>>> targets = [-1]
|
|
>>> perceptron = Perceptron(data,targets)
|
|
>>> perceptron.training() # doctest: +ELLIPSIS
|
|
('\\nEpoch:\\n', ...)
|
|
...
|
|
"""
|
|
for sample in self.sample:
|
|
sample.insert(0, self.bias)
|
|
|
|
for _ in range(self.col_sample):
|
|
self.weight.append(random.random())
|
|
|
|
self.weight.insert(0, self.bias)
|
|
|
|
epoch_count = 0
|
|
|
|
while True:
|
|
has_misclassified = False
|
|
for i in range(self.number_sample):
|
|
u = 0
|
|
for j in range(self.col_sample + 1):
|
|
u = u + self.weight[j] * self.sample[i][j]
|
|
y = self.sign(u)
|
|
if y != self.target[i]:
|
|
for j in range(self.col_sample + 1):
|
|
self.weight[j] = (
|
|
self.weight[j]
|
|
+ self.learning_rate
|
|
* (self.target[i] - y)
|
|
* self.sample[i][j]
|
|
)
|
|
has_misclassified = True
|
|
# print('Epoch: \n',epoch_count)
|
|
epoch_count = epoch_count + 1
|
|
# if you want control the epoch or just by error
|
|
if not has_misclassified:
|
|
print(("\nEpoch:\n", epoch_count))
|
|
print("------------------------\n")
|
|
# if epoch_count > self.epoch_number or not error:
|
|
break
|
|
|
|
def sort(self, sample: list[float]) -> None:
|
|
"""
|
|
:param sample: example row to classify as P1 or P2
|
|
:return: None
|
|
>>> data = [[2.0149, 0.6192, 10.9263]]
|
|
>>> targets = [-1]
|
|
>>> perceptron = Perceptron(data,targets)
|
|
>>> perceptron.training() # doctest: +ELLIPSIS
|
|
('\\nEpoch:\\n', ...)
|
|
...
|
|
>>> perceptron.sort([-0.6508, 0.1097, 4.0009]) # doctest: +ELLIPSIS
|
|
('Sample: ', ...)
|
|
classification: P...
|
|
"""
|
|
if len(self.sample) == 0:
|
|
raise ValueError("Sample data can not be empty")
|
|
sample.insert(0, self.bias)
|
|
u = 0
|
|
for i in range(self.col_sample + 1):
|
|
u = u + self.weight[i] * sample[i]
|
|
|
|
y = self.sign(u)
|
|
|
|
if y == -1:
|
|
print(("Sample: ", sample))
|
|
print("classification: P1")
|
|
else:
|
|
print(("Sample: ", sample))
|
|
print("classification: P2")
|
|
|
|
def sign(self, u: float) -> int:
|
|
"""
|
|
threshold function for classification
|
|
:param u: input number
|
|
:return: 1 if the input is greater than 0, otherwise -1
|
|
>>> data = [[0],[-0.5],[0.5]]
|
|
>>> targets = [1,-1,1]
|
|
>>> perceptron = Perceptron(data,targets)
|
|
>>> perceptron.sign(0)
|
|
1
|
|
>>> perceptron.sign(-0.5)
|
|
-1
|
|
>>> perceptron.sign(0.5)
|
|
1
|
|
"""
|
|
return 1 if u >= 0 else -1
|
|
|
|
|
|
samples = [
|
|
[-0.6508, 0.1097, 4.0009],
|
|
[-1.4492, 0.8896, 4.4005],
|
|
[2.0850, 0.6876, 12.0710],
|
|
[0.2626, 1.1476, 7.7985],
|
|
[0.6418, 1.0234, 7.0427],
|
|
[0.2569, 0.6730, 8.3265],
|
|
[1.1155, 0.6043, 7.4446],
|
|
[0.0914, 0.3399, 7.0677],
|
|
[0.0121, 0.5256, 4.6316],
|
|
[-0.0429, 0.4660, 5.4323],
|
|
[0.4340, 0.6870, 8.2287],
|
|
[0.2735, 1.0287, 7.1934],
|
|
[0.4839, 0.4851, 7.4850],
|
|
[0.4089, -0.1267, 5.5019],
|
|
[1.4391, 0.1614, 8.5843],
|
|
[-0.9115, -0.1973, 2.1962],
|
|
[0.3654, 1.0475, 7.4858],
|
|
[0.2144, 0.7515, 7.1699],
|
|
[0.2013, 1.0014, 6.5489],
|
|
[0.6483, 0.2183, 5.8991],
|
|
[-0.1147, 0.2242, 7.2435],
|
|
[-0.7970, 0.8795, 3.8762],
|
|
[-1.0625, 0.6366, 2.4707],
|
|
[0.5307, 0.1285, 5.6883],
|
|
[-1.2200, 0.7777, 1.7252],
|
|
[0.3957, 0.1076, 5.6623],
|
|
[-0.1013, 0.5989, 7.1812],
|
|
[2.4482, 0.9455, 11.2095],
|
|
[2.0149, 0.6192, 10.9263],
|
|
[0.2012, 0.2611, 5.4631],
|
|
]
|
|
|
|
target = [
|
|
-1,
|
|
-1,
|
|
-1,
|
|
1,
|
|
1,
|
|
-1,
|
|
1,
|
|
-1,
|
|
1,
|
|
1,
|
|
-1,
|
|
1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
-1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
-1,
|
|
1,
|
|
1,
|
|
1,
|
|
1,
|
|
-1,
|
|
-1,
|
|
1,
|
|
-1,
|
|
1,
|
|
]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|
|
|
|
network = Perceptron(
|
|
sample=samples, target=target, learning_rate=0.01, epoch_number=1000, bias=-1
|
|
)
|
|
network.training()
|
|
print("Finished training perceptron")
|
|
print("Enter values to predict or q to exit")
|
|
while True:
|
|
sample: list = []
|
|
for i in range(len(samples[0])):
|
|
user_input = input("value: ").strip()
|
|
if user_input == "q":
|
|
break
|
|
observation = float(user_input)
|
|
sample.insert(i, observation)
|
|
network.sort(sample)
|